Question

In: Physics

Suppose that two blocks are positioned on an Atwood machine so that the block on the...

Suppose that two blocks are positioned on an Atwood machine so that the block on the right of mass m1 hangs at a lower elevation than the block on the left of mass m2. Both blocks are at rest. Based on this observation, what can you conclude? A) m1>m2 B) m1<m2 C) m1=m2 D) You cannot conclude anything with the given information.

Solutions

Expert Solution


Related Solutions

Suppose there are two blocks constructed so that one is twice as massive as the other...
Suppose there are two blocks constructed so that one is twice as massive as the other but they both are the same size and shape. If they are both dropped into free fall on, say, the moon, where there is no atmosphere, would they fall at the same rate? If they were dropped on Earth would they still fall at exactly the same rate, would the heavier one fall twice as fast, or something different? Explain what you think happens...
A.) Two blocks are positioned on surfaces, each inclined at the same angle of 40.6 degrees...
A.) Two blocks are positioned on surfaces, each inclined at the same angle of 40.6 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 5.91 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.450. Assume static friction has been overcome and that everything can...
Two blocks are positioned on surfaces, each inclined at the same angle of 52.5 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 52.5 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 5.05 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.510. Assume static friction has been overcome and that everything can slide....
1. Suppose we have two blocks of masses m1 and m2. The block with mass m1...
1. Suppose we have two blocks of masses m1 and m2. The block with mass m1 is moving towards block m2 at speed v. After the collision, we measure the total kinetic energy and find that the total kinetic energy after the collision is m2/(m1+m2) less than the kinetic energy before the collision. Find the final speeds of the two blocks. What type of collision is this? 2. Explain, in words, how we know that a freely spinning asteroid in...
QUESTION 1 Two blocks are positioned on surfaces, each inclined at the same angle of 41.1...
QUESTION 1 Two blocks are positioned on surfaces, each inclined at the same angle of 41.1 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 5.90 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.200. Assume static friction has been overcome and that everything...
Two blocks are positioned on surfaces, each inclined at the same angle 45.6 degrees with respect...
Two blocks are positioned on surfaces, each inclined at the same angle 45.6 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines, so the blocks can slide together. The mass of the black block is 4.10kg and the coefficient of kinetic friction for both blocks and inclines is μk 0.370. Assume static friction has been overcome and that everything can slide. A) What must...
For this question (Determine the velocity of the 60 kg block A if the two blocks...
For this question (Determine the velocity of the 60 kg block A if the two blocks are released from rest and the 40 kg block B moves 0.6 m up the in cline. The coefficient of kinetic friction between both blocks and the inclined planes is = 0.05.), how is T(2) = 110 V(a)^2 instead of T(2) = -50V(a)^2
Given the mass of two blocks that collide, and the velocities of each block before and...
Given the mass of two blocks that collide, and the velocities of each block before and after the collision, be able to determine whether the collision was elastic, partially or completely inelastic, or not possible since an unnamed external force would be necessary to change the momentum, and/or kinetic energy of the system. Please explain in simplest terms and give an example using units given.
The following data are given for a two-factor ANOVA with two treatments and three blocks. Block...
The following data are given for a two-factor ANOVA with two treatments and three blocks. Block 1 2 A 47 30 B 31 29 C 47 36 Using the 0.05 significance level conduct a test of hypothesis to determine whether the block or the treatment means differ. State the decision rule for treatments. (Round your answer to 1 decimal place.) State the null and alternate hypotheses for blocks. (Round your answer to 1 decimal place.) Also, state the decision rule...
Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25...
Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25 kg moves at 1 m/s to the right collides with a 0.5 kg mass at rest and the two masses stick together. What is the final speed of the blocks after the collision?           a) -0.33 m/s           b) +0.33 m/s           c) 3.27 m/s           d) 0.67 m/s           e) 0.25 m/s
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT