Question

In: Physics

Two identical blocks of mass M = 2.60 kg each are initially at rest on a...

Two identical blocks of mass M = 2.60 kg each are initially at rest on a smooth, horizontal table. A bullet of very small mass m = 20 g (m << M) is fired at a high speed v. = 120 m/s towards the first block. It quickly exits the first block at a reduced speed of 0.40 v, then strikes the second block, quickly getting embedded inside of it. All the motion happens on the x-axis.

(a) find the speeds of the two blocks after their encounters with the bullet.

(b) Now the first block catches up with the second one and collides with it. They got stuck together afterward and move forward. Find their common speed V after the collision.

(c) The two blocks now hit a light spring of spring constant k = 35 N/m mounted on the wall. How far is the spring compressed before the blocks reach a momentary stop?

Solutions

Expert Solution


Related Solutions

Two identical, uniform and frictionless spheres, each of mass m, rest in a rigid rectangular container...
Two identical, uniform and frictionless spheres, each of mass m, rest in a rigid rectangular container as shown in the figure. A line connecting their centers is at 45° to the horizontal. a)If the angle is increased to 90° think about what happens to the forces. This can help provide a check to your answers as we make a change to the problem. For all of the following questions, the configuration is now changed such that the line connecting their...
Two copper blocks, each of mass 1.96 kg, initially have different temperatures,t1 = 17° C and...
Two copper blocks, each of mass 1.96 kg, initially have different temperatures,t1 = 17° C and t2 = 27° C. The blocks are placed in contact with each other and come to thermal equilibrium. No heat is lost to the surroundings. (a) Find the final temperature of the blocks. °C Find the heat transferred between them. J (b) Find the entropy change of each block during the time interval in which the first joule of heat flows. ΔS1 =  J/K ΔS2...
A rifle of mass M is initially at rest. A bullet of mass m is fired...
A rifle of mass M is initially at rest. A bullet of mass m is fired from the rifle with a velocity v relative to the ground. Which one of the following expressions gives the velocity of the rifle relative to the ground after the bullet is fired? A) −mv B) mv C) Mv/m D) mv/M
A ball with a mass of 0.615 kg is initially at rest. It is struck by...
A ball with a mass of 0.615 kg is initially at rest. It is struck by a second ball having a mass of 0.380 kg , initially moving with a velocity of 0.260 m/s toward the right along the x axis. After the collision, the 0.380 kg ball has a velocity of 0.230 m/s at an angle of 37.4 ∘ above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. What is the magnitude...
12) Two identical particles of charge 6 μC and mass 4 μg are initially at rest...
12) Two identical particles of charge 6 μC and mass 4 μg are initially at rest and held 4 cm apart. How fast will the particles move when they are allowed to repel and separate to very large (essentially infinite) distance? Answer: Last Answer Hint: The particles are identical, so you can assume that the scenario is symmetrical. Use energy conservation: What type of energy is stored in the system when the particles are near each other and at rest?...
A block of mass m1 = 1 kg is initially at rest at the top of...
A block of mass m1 = 1 kg is initially at rest at the top of an h1 = 1 meter high ramp, see Fig. 2 below. It slides down the frictionless ramp and collides elastically with a block of unknown mass m2, which is initially at rest. After colliding with m2, mass m1 recoils and achieves a maximum height of only h2 = 0.33 m going back up the frictionless ramp. (HINT: Solving each part in sequence will guide...
Consider two separate blocks with mass M1 and M2 on a horizontal frictionless surface, initially at rest. Both blocks are subjected to the same force of F
  Consider two separate blocks with mass M1 and M2 on a horizontal frictionless surface, initially at rest. Both blocks are subjected to the same force of F (applied horizontally) and they are pushed D meters on the surface. If M1<M2, which one of the following is wrong? A. Kinetic energy of block M1 is greater than the kinetic energy of block M2. B. Speed of block M1 is greater than the speed of block M2. C. Acceleration of block...
A block of mass 220 kg initially at rest is pushed along the floor by a...
A block of mass 220 kg initially at rest is pushed along the floor by a force F directed at an angle 40o below the positive x-axis. The force pushes against a friction force with coefficient µ = 0.25. Calculate the magnitude of the force F, that will give the block an acceleration of 3.6 m/s2
A block of mass M_2 = 6.0 kg is initially at rest on a level table
A block of mass M_2 = 6.0 kg is initially at rest on a level table. A string of negligible mass is connected to M_2, runs over a friction less pulley, of 2.0 kg mass and 0.1m radius and is attached to a hanging mass M_1 =5.0 kg 3m above the ground as shown in the figure A. The system was released and the velocity of M_1 was 2.7 m/s when it was 2.0 m above the ground as shown...
A brick of mass m is initially at rest at the peak of an inclined plane,...
A brick of mass m is initially at rest at the peak of an inclined plane, which has a height of 6.4 m and has an angle of θ = 18° with respect to the horizontal. After being released, it is found to be moving at v = 0.15 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the brick and the plane is μp = 0.1, and the coefficient...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT