In: Chemistry
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.66× 10–4 and Ka2 = 4.99× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below.
(a) a 0.121 M solution of H2A
pH = ? [H2A]=? [HA-]=? [A2-]=?
(b) a 0.121 M solution of NaHA
pH = ? [H2A]=? [HA-]=? [A2-]=?
(c) a 0.121 M solution of Na2A
pH = ? [H2A]=? [HA-]=? [A2-]=?
H2A -----------------> HA- + H+
0.121 0 0
0.121 - x x x
Ka1 = [HA-][H+] / [H2A]
3.66 x 10^-4 = x^2 / 0.121 - x
x = 6.47 x 10^-3
[H+] = 6.47 x 10^-3 M
pH = -log[H+] = -log ( 6.47 x 10^-3)
pH = 2.19
[H2A] = 0.121 - 6.47 x 10^-3 = 0.1145
pH = 2.19
[H2A] = 0.114 M
[HA-] = 6.47 x 10^-3 M
[A2-] = Ka2 = 4.99 x 10^-12 M
b)
pH = pKa1 + pKa2 / 2
= 3.44 + 11.30 / 2
pH = 7.37
[H+] = 10^-7.37 = 4.27 x 10^-8
[HA-] = 0.121 M
H2A ------------> HA- + H+
Ka1 = [HA-][H+] / [H2A]
[H2A] = [HA-][H+] / Ka1 = 0.121 x 4.27 x 10^-8 / 3.66 x 10^-4
[H2A] = 1.41 x 10^-5 M
HA- -------------> H+ + A2-
Ka2 = [H+][A2-] / [HA-]
[A2-] = Ka2 x [HA-] / [H+] = 4.99 x 10^-12 x 0.121 / 4.27 x 10^-8
[A2-] = 1.42 x 10^-5 M
c) 0.121 M Na2A :
A2- + H2O --------------> HA- + OH-
0.121 0 0
0.121-x x x
Kb1 = x^2 / 0.185 - x
Kw / Ka2 = x^2 / 0.185 - x
2.00 x 10^-3 = x^2 / 0.121 - x
x = 0.0146
[HA-] = 0.0146 M
[OH-] = 0.0146 M
pOH = -log 0.0146 = 1.84
pH = 12.16
[A2-] = 0.106 M
[H2A] = [HA-][H+] / Ka1 = 0.0244 x 4.07 x 10^-13 / 2.40 x 10^-4
[H2A] = 2.76 x 10^-11 M