In: Chemistry
For the diprotic weak acid H2A, Ka1 = 3.4 × 10-6 and Ka2 = 8.2 × 10-9. What is the pH of a 0.0800 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution?
First, assume the acid:
to be H2A, for simplicity, so it will ionize as follows:
H2A <-> H+ + HA-
HA- <-> H+ + A-2
where, H+ is the proton and HA- and A-2 are the conjugate bases, H2A is molecular acid
Ka1 = [H+][HA-]/[H2A]; by definition
Ka2 = [H+][A-2]/[HA-]
initially
[H+] = 0
[HA-] = 0
[H2A] = M;
the change
initially
[H+] = + x
[HA-] = + x
[HA2] = - x
in equilbrirum
[H+] = 0 + x
[A-] = 0 + x
[HA] = M - x
substitute in Ka
Ka1 = [H+][HA-]/[H2A]
Ka = x*x/(M-x)
x^2 + Kax - M*Ka = 0
if M = 0.08 M; then
x^2 + (3.4*10^-6)x - 0.08 *(3.4*10^-6) = 0
solve for x
x =5.19*10^-4
substitute
[H+] = 0 + 5.19*10^-4= 5.19*10^-4 M
[HA-] = 0 + 5.19*10^-4= 5.19*10^-4M
[H2A] = M - x = 0.08-5.19*10^-4= 0.079481 M
Now...
Second ionization
HA- <-> H+ + A-2
initially
[H+] = x
[A-2] = 0
[HA-] = M-x
the change
[H+] = +y
[A-2] = + y
[HA-] = - y
in equilbrirum
[H+] = x+y
[A-2] = 0 + y
[HA-] = M - x - y
substitute in Ka
Ka2 = [H+][A-2]/[HA-]
Ka2 = (x+y)(y) / (M - x - y)
assume M-x >> M-x-y so (due to Ka2)
Ka2 = (x+y)(y) / (M - x)
y^2+ xy = Ka2(M-x)
y^2+ xy - Ka2(M-x) = 0
y^2+ 0.079481*y - (8.2*10^-9)*(0.079481 ) = 0
y = 8.2*10^-9
then
[H+] = x+y = 5.19*10^-4
[A-2] = 0 + y = 8.2*10^-9
[HA-] = M - x - y = 0.079481