In: Chemistry
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 2.40× 10–4 and Ka2 = 2.70× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below.
.185M solution of NaHA
.185M solution of Na2A
Ka1 = 2.40 x 10^-4
pKa1 = -log Ka1 = -log (2.40 x 10^-4 )
pKa1 = 3.62
pKa2 = 11.57
a ) 0.185 M NaHA :
pH = pKa1 + pKa2 / 2
= 3.62 + 11.57 / 2
pH = 7.60
[H+] = 10^-7.60 = 2.51 x 10^-8
[HA-] = 0.185 M
H2A ------------> HA- + H+
Ka1 = [HA-][H+] / [H2A]
[H2A] = [HA-][H+] / Ka1 = 0.185 x 2.51 x 10^-8 / 2.40 x 10^-4
[H2A] = 1.94 x 10^-5 M
HA- -------------> H+ + A2-
Ka2 = [H+][A2-] / [HA-]
[A2-] = Ka2 x [HA-] / [H+] = 2.70 x 10^-12 x 0.185 / 2.51 x 10^-8
[A2-] = 1.99 x 10^-5 M
b) 0.185 M Na2A :
A2- + H2O --------------> HA- + OH-
0.185 0 0
0.185-x x x
Kb1 = x^2 / 0.185 - x
Kw / Ka2 = x^2 / 0.185 - x
3.70 x 10^-3 = x^2 / 0.185 - x
x = 0.0244
[HA-] = 0.0244 M
[OH-] = 0.0244 M
pOH = -log 0.0244 = 1.61
pH = 12.39
[A2-] = 0.161 M
[H2A] = [HA-][H+] / Ka1 = 0.0244 x 4.07 x 10^-13 / 2.40 x 10^-4
[H2A] = 4.14 x 10^-11 M