Question

In: Chemistry

A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.61× 10–4 and Ka2 =...

A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.61× 10–4 and Ka2 = 4.02× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below.

(a) a 0.124 M solution of H2A

pH [H2A] [HA-] [A2-]

(b) a 0.124 M solution of NaHA

pH [H2A] [HA-] [A2-]

(c) a 0.124 M solution of Na2A

pH [H2A] [HA-] [A2-]

Solutions

Expert Solution

The reactions are

H2A <------> HA- + H+;..................Ka1 = 3.61*10^-4
HA- <------> A(^2-) + H+;...............Ka2 = 4.02*10^-12

For the concentrations of H+ and HA- you consider only the first reaction since the HA- product will only slightly dissociate (Ka2 is very small).

If x moles of H2A dissociate, then x moles of HA- and H+ are produced, and the concentration of H2A is reduced by x:

[H2A] = 0.124 - x
[H+] = x
[HA-] = x

Ka1 = [H+]*[HA-]/[H2A] = x²/(0.124 - x)

3.61*10^-4*(0.124- x) = x²
x² + 3.61*10^-4*x - 0.124*3.61*10^-4 = 0
x = 0.0065

[H+] = x = 0.0065
pH = -log(0.0065) = 2.19
[H2A] = 0.124 - x = 0.1175 M

For the second reaction, Ka2 = [A(^2-)]*[H+]/[HA-] = [A(^2-)]*x/x;

[A(^2-] = Ka2
[A(^2-) = 4.02*10^-12 M


Related Solutions

A diprotic acid, H2A, has acid dissociation constants of Ka1 = 2.40× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 2.40× 10–4 and Ka2 = 2.70× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. .185M solution of NaHA .185M solution of Na2A
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.63× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.63× 10–4 and Ka2 = 4.71× 10–11. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.184 M solution of H2A (b) a 0.184 M solution of NaHA (c) a 0.184 M solution of Na2A
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.66× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.66× 10–4 and Ka2 = 4.99× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.121 M solution of H2A pH = ? [H2A]=? [HA-]=? [A2-]=? (b) a 0.121 M solution of NaHA pH = ? [H2A]=? [HA-]=? [A2-]=? (c) a 0.121 M solution of Na2A pH = ? [H2A]=? [HA-]=? [A2-]=?
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.94× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.94× 10–4 and Ka2 = 2.17× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.147 M solution of H2A (b) a 0.147 M solution of NaHA
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.56× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.56× 10–4 and Ka2 = 2.28× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.203 M solution of H2A (b) a 0.203 M solution of NaHA (c) a 0.203 M solution of Na2A
Given a diprotic acid, H2A, with two ionization constants of Ka1 = 4.08× 10–4 and Ka2...
Given a diprotic acid, H2A, with two ionization constants of Ka1 = 4.08× 10–4 and Ka2 = 2.89× 10–12, calculate the pH and molar concentrations of H2A, HA–, and A2– for each of the solutions below. (a) a 0.167 M solution of H2A (b) a 0.167 M solution of NaHA (c) a 0.167 M solution of Na2A
For the diprotic weak acid H2A, Ka1 = 3.2 × 10^-6 and Ka2 = 8.0 ×...
For the diprotic weak acid H2A, Ka1 = 3.2 × 10^-6 and Ka2 = 8.0 × 10^-9. What is the pH of a 0.0600 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution? Please show work.
For the diprotic weak acid H2A, Ka1 = 2.5 × 10-6 and Ka2 = 5.5 ×...
For the diprotic weak acid H2A, Ka1 = 2.5 × 10-6 and Ka2 = 5.5 × 10-9. What is the pH of a 0.0800 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution?
For the diprotic weak acid H2A, Ka1 = 3.3 × 10-6 and Ka2 = 8.2 ×...
For the diprotic weak acid H2A, Ka1 = 3.3 × 10-6 and Ka2 = 8.2 × 10-9. What is the pH of a 0.0400 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution? pH = [H2A] = [A2-]=
For the diprotic weak acid H2A, Ka1 = 3.4 × 10-6 and Ka2 = 8.2 ×...
For the diprotic weak acid H2A, Ka1 = 3.4 × 10-6 and Ka2 = 8.2 × 10-9. What is the pH of a 0.0800 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT