Question

In: Math

Differentiate: do the Derivative for all (a) f(x) = x ^3 − 5e + x ^5/3...

Differentiate: do the Derivative for all

(a) f(x) = x ^3 − 5e + x ^5/3

(b) g(x) = x ^2+e^ x / √ x+1

(c) h(x) = 2^sec(x)

(d) j(x) = cos(sin(xe^x ))

(e) f(x) = 2^x sin−1 (x^3 )

(f) g(x) = x ^sec(x)

(g) f(x) = tan−1 ( √ 2x + 1)

(h) h(x) = e^x log3 (x^2 − 1)

(i) g(x) = (cot(x) + 4/ x )(ln(x) − 2e^ x )

(j) j(x) = log2 (sin(xe^x ))

(k) h(x) = √ x ^x

Solutions

Expert Solution


Related Solutions

Let f(x) = −3+(3x2 −x+1) ln(2√x−5) (a) Find the derivative of f. (b) Using the derivative...
Let f(x) = −3+(3x2 −x+1) ln(2√x−5) (a) Find the derivative of f. (b) Using the derivative and linear approximation, estimate f(9.1).
Differentiate the following: 1) f(x) = √2x-4. (all under square root) 2) f(x) = x/5-x 3)...
Differentiate the following: 1) f(x) = √2x-4. (all under square root) 2) f(x) = x/5-x 3) y=cos(4x^3) 4) f(x)=tan(x^2) 5) f(x)= 3e^2x cos(2x) 6) y= sin2x/cosx 7) y= √sin(cosx) (all under the square root)
Suppose that f is a differentiable function with derivative f" (x) = (x − 3)(x +...
Suppose that f is a differentiable function with derivative f" (x) = (x − 3)(x + 1)(x + 5). Determine the intervals of x for which the function of f is increasing and decreasing Explain why a positive value for f" (x) means the graph f(x) is increasing For f(x) = 2x2- − 3x2 − 12x + 21, find where f'(x) = 0, and the intervals on which the function increases and decreases Determine the values of a, b, and...
What is the Derivative of f(x)=(4x^7)^5
Find the Derivative of the f(x)
Use the given function, its first derivative, and its second derivative to answer the following: f(x)=(1/3)x^3...
Use the given function, its first derivative, and its second derivative to answer the following: f(x)=(1/3)x^3 - (1/2)x^2 - 6x + 5 f'(x)= x^2 - x - 6 = (x+2)(x-3) f''(x)= 2x - 1 a) What are the intervals of increase and the intervals of decrease b) Identify local min and max points c) What are the intervals where the function is concave up, concave down and identify the inflection points
f(x)=e^x/(3+e^x) Find the first derivative of f. Use interval notation to indicate where f(x) is increasing....
f(x)=e^x/(3+e^x) Find the first derivative of f. Use interval notation to indicate where f(x) is increasing. List the x coordinates of all local minima of f. If there are no local maxima, enter 'NONE'. List the x coordinates of all local maxima of f. If there are no local maxima, enter 'NONE'. Find the second derivative of f: Use interval notation to indicate the interval(s) of upward concavity of f(x). Use interval notation to indicate the interval(s) of downward concavity...
Consider the function f(x)f(x) whose second derivative is f''(x)=5x+10sin(x)f′′(x)=5x+10sin(x). If f(0)=4f(0)=4 and f'(0)=4f′(0)=4, what is f(5)f(5)?....
Consider the function f(x)f(x) whose second derivative is f''(x)=5x+10sin(x)f′′(x)=5x+10sin(x). If f(0)=4f(0)=4 and f'(0)=4f′(0)=4, what is f(5)f(5)?. show work
For the following exercises, use the definition of derivative to calculate the derivative of each function. f(x) = 3x3 − x2 + 2x + 5
For the following exercises, use the definition of derivative to calculate the derivative of each function.f(x) = 3x3 − x2 + 2x + 5
Part A. If a function f has a derivative at x not. then f is continuous...
Part A. If a function f has a derivative at x not. then f is continuous at x not. (How do you get the converse?) Part B. 1) There exist an arbitrary x for all y (x+y=0). Is false but why? 2) For all x there exists a unique y (y=x^2) Is true but why? 3) For all x there exist a unique y (y^2=x) Is true but why?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT