In: Advanced Math
For the following exercises, use the definition of derivative to calculate the derivative of each function.
f(x) = 3x3 − x2 + 2x + 5
Using the definition of derivative limh→0{f(x + h) – f(x)}/h, the derivative of f(x) 3x3 – x2 + 2x + 5 is calculated as given below:
limh→0{f(x + h) – f(x)}/h = limh→0{3(x + h)3 – (x + h)2 + 2(x + h) + 5-(3x3 – x2 + 2x + 5)}/h
= limh→0{3(x3 + 3x2h + 3xh2 + h3) – (x2 + 2xh + h2) + 2(x + h) + 5 – (3x3 – x2 + 2x + 5)}/h
= limh→0(3x3 + 9x2h + 9xh2 + 3h3 – x2 – 2xh – h2 + 2x + 2h + 5 – 3x3 + x2 – 2x – 5)/h
= limh→0(9x2h + 9xh2 + 3h3 – 2xh – h2 + 2h)/h
Now, consider the following steps,
= limh→0(9x2 + 9hx + 3h2 – 2x – h + 2)
= 9x2 + 9(0)x + 3(0)2 – 2x – (0) + 2
= 9x2 + 0 + 0 – 2x – 0 + 2
= 9x2 - 2x + 2