Question

In: Advanced Math

Part A. If a function f has a derivative at x not. then f is continuous...

Part A. If a function f has a derivative at x not. then f is continuous at x not. (How do you get the converse?)

Part B. 1) There exist an arbitrary x for all y (x+y=0). Is false but why?

2) For all x there exists a unique y (y=x^2) Is true but why?

3) For all x there exist a unique y (y^2=x) Is true but why?

Solutions

Expert Solution


Related Solutions

1) Let f(x) be a continuous, everywhere differentiable function and g(x) be its derivative. If f(c)...
1) Let f(x) be a continuous, everywhere differentiable function and g(x) be its derivative. If f(c) = n and g(c) = d, write the equation of the tangent line at x = c using only the variables y, x, c, n, and d. You may use point-slope or slope-intercept but do not introduce more variables. 2) Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)? 3) Let f(x) be a continuous, everywhere differentiable...
1) The graph of the derivative f ' of a continuous function f is shown. (Assume...
1) The graph of the derivative f ' of a continuous function f is shown. (Assume the function f is defined only for 0 < x < ∞.) (a) On what interval(s) is f increasing? (2a) On what interval(s) is f decreasing? (b) At what value(s) of x does f have a local maximum? (2b) At what value(s) of x does f have a local minimum? x=? (c) On what interval(s) is f concave upward? (2c) On what interval(s) is...
Suppose that f is a differentiable function with derivative f" (x) = (x − 3)(x +...
Suppose that f is a differentiable function with derivative f" (x) = (x − 3)(x + 1)(x + 5). Determine the intervals of x for which the function of f is increasing and decreasing Explain why a positive value for f" (x) means the graph f(x) is increasing For f(x) = 2x2- − 3x2 − 12x + 21, find where f'(x) = 0, and the intervals on which the function increases and decreases Determine the values of a, b, and...
A) Find the derivative of the function f by using the rules of differentiation. f(x) =...
A) Find the derivative of the function f by using the rules of differentiation. f(x) = 380 B)Find the derivative of the function f by using the rules of differentiation. f(x) = x0.8 C) Find the derivative of the function f by using the rules of differentiation. D)Find the derivative of the function. f(u) = 10 u E)Find the derivative of the function f by using the rules of differentiation. f(x) = 9x3 - 2x2 + 1 u u
Question 1 Let f be a function for which the first derivative is f ' (x)...
Question 1 Let f be a function for which the first derivative is f ' (x) = 2x 2 - 5 / x2 for x > 0, f(1) = 7 and f(5) = 11. Show work for all question. a). Show that f satisfies the hypotheses of the Mean Value Theorem on [1, 5] b)Find the value(s) of c on (1, 5) that satisfyies the conclusion of the Mean Value Theorem. Question 2 Let f(x) = x 3 − 3x...
If a continuous random process has a probability density function f(x) = a + bx, for...
If a continuous random process has a probability density function f(x) = a + bx, for 0 < x < 5, where a and b are constants, and P(X > 3) = 0.3 Determine: The values of a and b. The cumulative distribution function F(x) P(X < 2) P(2 < X < 4)
If a continuous random process has a probability density function f(x) = a + bx, for...
If a continuous random process has a probability density function f(x) = a + bx, for 0 < x < 5, where a and b are constants, and P(X > 3) = 0.3 Determine: The values of a and b. The cumulative distribution function F(x) P(X < 2) P(2 < X < 4)
a) State the definition that a function f(x) is continuous at x = a. b) Let...
a) State the definition that a function f(x) is continuous at x = a. b) Let f(x) = ax^2 + b if 0 < x ≤ 2 18/x+1 if x > 2 If f(1) = 3, determine the values of a and b for which f(x) is continuous for all x > 0.
For the following exercises, use the definition of derivative to calculate the derivative of each function. f(x) = 5π
For the following exercises, use the definition of derivative to calculate the derivative of each function.f(x) = 5π
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x)....
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x). Explain the following issues using diagram (Graphs) a) Relationship between f(x) and F(x) for a continuous variable, b) explaining how a uniform random variable can be used to simulate X via the cumulative distribution function of X, or c) explaining the effect of transformation on a discrete and/or continuous random variable
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT