Question

In: Math

Suppose P(t) t(3cubed)– 4t + 4 represents the position of a moving particle after t seconds....

Suppose P(t) t(3cubed)– 4t + 4 represents the position of a moving particle after t seconds.

a. At what time(s) does the particle change directions?

b. When is the speed of the particle decreasing?

c. What is the distance traveled by the particle for tE[1, 3]?

Solutions

Expert Solution


Related Solutions

s(t)= 5t + 3/t^2  be the position in feet of a particle after t seconds for t...
s(t)= 5t + 3/t^2  be the position in feet of a particle after t seconds for t ≥ 1. (a) Compute the average velocity from t = 1 to t = 3. Include units in your answer (b) Where is the velocity = 0? (c) Show the accelaration for t ≥ 1 is positive. (d) What are the units for the acceleration?
A particle is moving with the given data. Find the position of the particle. a(t) =...
A particle is moving with the given data. Find the position of the particle. a(t) = 11 sin(t) + 3 cos(t), s(0) = 0, s(2π) = 18
A particle is moving with the given data. Find the position of the particle. v(t) =...
A particle is moving with the given data. Find the position of the particle. v(t) = sin(t) − cos(t), s(0) = 4
4(a) Suppose a particle P is moving in the plane so that its coordinates are given...
4(a) Suppose a particle P is moving in the plane so that its coordinates are given by P(x,y), where x = 4cos2t, y = 7sin2t. x2 y2 (i) By finding a, b ∈ R such that a2 + b2 = 1, show that P is travelling on an elliptical path. [10 marks] (ii) Let L(t) be the distance from P to the origin. Obtain an expression for L(t).[8 marks] (iii) How fast is the distance between P and the origin...
1. A particle is moving with the given data. Find the position of the particle. a(t)=2t+7,...
1. A particle is moving with the given data. Find the position of the particle. a(t)=2t+7, s(0)=8, v(0)=-3 2.Find f f'(x)=1 sqrt(1-x2) , f(1/2)=8
The position of a particle moving along the x-axis is given by x(t) = t^3 +...
The position of a particle moving along the x-axis is given by x(t) = t^3 + 9t^2 − 21t with t is in [0, 2]. (a) Find the velocity and acceleration of the particle. (b) For what t-values is the velocity 0? (Enter your answers as a comma-separated list.) (c) When is the particle moving to the left (velocity is negative)? (Enter your answer using interval notation.) When is the particle moving to the right (velocity is positive)? (Enter your...
The position of a particle moving along a line (measured in meters) is s(t) where t...
The position of a particle moving along a line (measured in meters) is s(t) where t is measured in seconds. Answer all parts, include units in your answers. s(t)=2t^3 +6t^2 −48t+7 −10<t<10 (a) Find the velocity function. (b) Find all times at which the particle is at rest. (c) On what interval is the particle moving to the right? (d) Is the particle slowing down or speeding up at t = −1 seconds?
The position vector F(t) of a moving particle at time t[s] is given by F(t)= e^t...
The position vector F(t) of a moving particle at time t[s] is given by F(t)= e^t sin(t)i-j+e^t cos(t)k a) Calculate the acceleration a(t). b) Find the distance traveled by the particle at time t = 3π/2, if the particle starts its motion at time t = π/2. c) Find the unit tangent vector of this particle at time t = 3π/2. d) Find the curvature of the path of this particle at time t = 3π/2.
Particle Position and Time The position of a particle moving along the x axis depends on...
Particle Position and Time The position of a particle moving along the x axis depends on the time according to the equation x = ct2 - bt3, where x is in meters and t in seconds. (a) What dimension and units must c have? s2/ms/m2     m/s2m2/s What dimension and units must b have? m3/ss/m3     s3/mm/s3 For the following, let the numerical values of c and b be 3.3 and 1.0 respectively. (b) At what time does the particle reach its maximum positive...
An object’s position above the ground, s(t), in meters, after t seconds is given by s(t)...
An object’s position above the ground, s(t), in meters, after t seconds is given by s(t) = 16t2+120t+6. (a) What is the position of the object at time t = 3 seconds? ( b) Find the velocity of the object as a function of t. (c) Find the object’s acceleration at any time t. (d) When is the velocity of the object 56 m/s? (e) Find the position of the object at the time when the velocity is 56 m/s....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT