Question

In: Math

1. A particle is moving with the given data. Find the position of the particle. a(t)=2t+7,...

1. A particle is moving with the given data. Find the position of the particle.

a(t)=2t+7, s(0)=8, v(0)=-3

2.Find f

f'(x)=1 sqrt(1-x2) , f(1/2)=8

Solutions

Expert Solution

if satisfied with the explanation, please rate it up..


Related Solutions

A particle is moving with the given data. Find the position of the particle. a(t) =...
A particle is moving with the given data. Find the position of the particle. a(t) = 11 sin(t) + 3 cos(t), s(0) = 0, s(2π) = 18
A particle is moving with the given data. Find the position of the particle. v(t) =...
A particle is moving with the given data. Find the position of the particle. v(t) = sin(t) − cos(t), s(0) = 4
The position of a particle moving along the x-axis is given by x(t) = t^3 +...
The position of a particle moving along the x-axis is given by x(t) = t^3 + 9t^2 − 21t with t is in [0, 2]. (a) Find the velocity and acceleration of the particle. (b) For what t-values is the velocity 0? (Enter your answers as a comma-separated list.) (c) When is the particle moving to the left (velocity is negative)? (Enter your answer using interval notation.) When is the particle moving to the right (velocity is positive)? (Enter your...
The position vector F(t) of a moving particle at time t[s] is given by F(t)= e^t...
The position vector F(t) of a moving particle at time t[s] is given by F(t)= e^t sin(t)i-j+e^t cos(t)k a) Calculate the acceleration a(t). b) Find the distance traveled by the particle at time t = 3π/2, if the particle starts its motion at time t = π/2. c) Find the unit tangent vector of this particle at time t = 3π/2. d) Find the curvature of the path of this particle at time t = 3π/2.
2). A particle moving on the x-axis has a time-dependent position (t) given by the equation...
2). A particle moving on the x-axis has a time-dependent position (t) given by the equation x (t) = ct - bt^3. Where the units of x are meters (m) and time t in seconds (s). (Hint: you must get derivatives, you need graph paper) (a) So that the position in x has units of meter which are the units of the constants c and b? If c = 5 and b = 1. From ti = 0s to tf...
Find the velocity, acceleration, and speed of a particle with the given position function. r(t) =...
Find the velocity, acceleration, and speed of a particle with the given position function. r(t) = 2 cos(t), 2t, 2 sin(t)
Find the velocity, acceleration, and speed of a particle with the given position function. r(t) =...
Find the velocity, acceleration, and speed of a particle with the given position function. r(t) = 9 cos(t), 8 sin(t) v(t) = a(t) = |v(t)| = Sketch the path of the particle and draw the velocity and acceleration vectors for t = π 3 .
1.The position of a particle in rectilinear motion is given by s (t) = 3sen (t)...
1.The position of a particle in rectilinear motion is given by s (t) = 3sen (t) + t ^ 2 + 7. Find the speed of the particle when its acceleration is zero. 2.Approximate the area bounded by the graph of y = -x ^ 2 + x + 2, the y-axis, the x-axis, and the line x = 2. a) Using Reimmann sums with 4 subintervals and the extreme points on the right. b) Using Reimmann sums with 4...
The position of a particle moving along a line (measured in meters) is s(t) where t...
The position of a particle moving along a line (measured in meters) is s(t) where t is measured in seconds. Answer all parts, include units in your answers. s(t)=2t^3 +6t^2 −48t+7 −10<t<10 (a) Find the velocity function. (b) Find all times at which the particle is at rest. (c) On what interval is the particle moving to the right? (d) Is the particle slowing down or speeding up at t = −1 seconds?
A particle is moving according to the given data v(t)=t^2 - sqrt(t), x(0) = 0, 0...
A particle is moving according to the given data v(t)=t^2 - sqrt(t), x(0) = 0, 0 ≤ t ≤ 4. • Find x(t), the position of the particle at time t. • For what values of t is the particle moving to the left? To the right? • Find the displacement of the particle. • Find the total distance covered by the particle.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT