Question

In: Chemistry

At equilibrium, the concentrations in this system were found to be [N2]=[O2]=0.200 M[N2]=[O2]=0.200 M and [NO]=0.400...

At equilibrium, the concentrations in this system were found to be [N2]=[O2]=0.200 M[N2]=[O2]=0.200 M and [NO]=0.400 M.[NO]=0.400 M.

N2(g)+O2(g)−⇀↽−2NO(g)N2(g)+O2(g)↽−−⇀2NO(g)

If more NONO is added, bringing its concentration to 0.700 M,0.700 M, what will the final concentration of NONO be after equilibrium is re‑established?

[NO]final=

Solutions

Expert Solution


Related Solutions

At equilibrium, the concentrations in this system were found to be [N2]=[O2]=0.200 M and [NO]=0.500 M....
At equilibrium, the concentrations in this system were found to be [N2]=[O2]=0.200 M and [NO]=0.500 M. N2(g)+O2(g)<----->2NO(g) If more NO is added, bringing its concentration to 0.800 M, what will the final concentration of NO be after equilibrium is re-established? ____________M
At equilibrium, the concentrations in this system were found to be [N2]=[O2]=0.100 M and [NO]=0.500 M....
At equilibrium, the concentrations in this system were found to be [N2]=[O2]=0.100 M and [NO]=0.500 M. N2(g) + O2 (g) <----> 2NO(g) If more NO is added, bringing its concentration to 0.800 M, what will the final concentration of NO be after equilibrium is re-established? _____M
Consider the titration of 100.0 mL of 0.400 M C5H5N by 0.200 M HCl. (Kb for...
Consider the titration of 100.0 mL of 0.400 M C5H5N by 0.200 M HCl. (Kb for C5H5N = 1.7×10-9) Part 1 Calculate the pH after 0.0 mL of HCl added. pH = Part 2 Calculate the pH after 35.0 mL of HCl added. pH = Part 3 Calculate the pH after 75.0 mL of HCl added. pH = Part 4 Calculate the pH at the equivalence point. pH = Part 5 Calculate the pH after 300.0 mL of HCl added....
Consider the titration of 100.0 mL of 0.400 M C5H5N by 0.200 M HCl. (Kb for...
Consider the titration of 100.0 mL of 0.400 M C5H5N by 0.200 M HCl. (Kb for C5H5N = 1.7×10-9) Part 1 Calculate the pH after 0.0 mL of HCl added. pH = Part 2 Calculate the pH after 25.0 mL of HCl added. pH = Part 3 Calculate the pH after 75.0 mL of HCl added. pH = Part 4 Calculate the pH at the equivalence point. pH = Part 5 Calculate the pH after 300.0 mL of HCl added....
Consider the titration of 100.0 mL of 0.400 M HONH2 by 0.200 M HCl. (Kb for...
Consider the titration of 100.0 mL of 0.400 M HONH2 by 0.200 M HCl. (Kb for HONH2 = 1.1×10-8) Part 1 Calculate the pH after 0.0 mL of HCl added. pH = Part 2 Calculate the pH after 40.0 mL of HCl added. pH = Part 3 Calculate the pH after 75.0 mL of HCl added. pH = Part 4 Calculate the pH at the equivalence point. pH = Part 5 Calculate the pH after 300.0 mL of HCl added....
A mixture initially contains A, B, and C in the following concentrations: [A] = 0.400 M...
A mixture initially contains A, B, and C in the following concentrations: [A] = 0.400 M , [B] = 0.650 M , and [C] = 0.450 M . The following reaction occurs and equilibrium is established: A+2B⇌C At equilibrium, [A] = 0.230 M and [C] = 0.620 M . Calculate the value of the equilibrium constant, Kc.
PART A.Identify the proper form of the equilibrium-constant expression for the equation N2(g)+O2(g)⇌2NO(g) 1.K=[NO][N2][O2] 2.K=[NO]2[N2][O2] 3.K=[N2][O2][NO]2...
PART A.Identify the proper form of the equilibrium-constant expression for the equation N2(g)+O2(g)⇌2NO(g) 1.K=[NO][N2][O2] 2.K=[NO]2[N2][O2] 3.K=[N2][O2][NO]2 4.K=2[NO][N2][O2] PART B. The equilibrium-constant of the reaction NO2(g)+NO3(g)⇌N2O5(g) is K=2.1×10−20. What can be said about this reaction? 1.At equilibrium the concentration of products and reactants is about the same. 2.At equilibrium the concentration of products is much greater than the concentration of reactants. 3.At equilibrium the concentration of reactants is much greater than that of products. 4.There are no reactants left over once...
what volume of 0.200 m HCl solution is needed to neutralize 0.400 g of NaHCO3
what volume of 0.200 m HCl solution is needed to neutralize 0.400 g of NaHCO3
For the reaction below at a certain temperature, it is found that the equilibrium concentrations in...
For the reaction below at a certain temperature, it is found that the equilibrium concentrations in a 5.09-L rigid container are [H2] = 0.0496 M, [F2] = 0.0144 M, and [HF] = 0.478 M. H2(g) + F2(g) < == > 2 HF(g) If 0.179 mol of F2 is added to this equilibrium mixture, calculate the concentrations of all gases once equilibrium is reestablished.
If the initial concentration of N2 is 1.1 M and O2 is 1.4 M, what would...
If the initial concentration of N2 is 1.1 M and O2 is 1.4 M, what would the concentration of NO be when equilibrium is established? At high temperatures, nitrogen and oxygen can combine to form nitric oxide, N2(g) + O2(g) ⇌ 2NO(g) Kc = 3.3 x 10-8.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT