Question

In: Chemistry

For the reaction below at a certain temperature, it is found that the equilibrium concentrations in...

For the reaction below at a certain temperature, it is found that the equilibrium concentrations in a 5.09-L rigid container are [H2] = 0.0496 M, [F2] = 0.0144 M, and [HF] = 0.478 M.

H2(g) + F2(g) < == > 2 HF(g)

If 0.179 mol of F2 is added to this equilibrium mixture, calculate the concentrations of all gases once equilibrium is reestablished.

Solutions

Expert Solution


Related Solutions

The equilibrium constant Kc for the reaction below is 0.00427 at a certain temperature. Br2(g) ⇌...
The equilibrium constant Kc for the reaction below is 0.00427 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0844 M and [Br] = 0.0763 M, calculate the concentrations of these species at equilibrium.
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. At this temperature,...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. At this temperature, 0.500 mol of H2 and 0.500 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
The equilibrium constant, K, of a reaction at a particular temperature is determined by the concentrations or pressures of the reactants and products at equilibrium.
  The equilibrium constant, K, of a reaction at a particular temperature is determined by the concentrations or pressures of the reactants and products at equilibrium. For a gaseous reaction with the general form aA+bB⇌cC+dD the Kc and Kp expressions are given by Kc=[C]c[D]d/[A]a[B]b Kp=(PC)c(PD)d(PA)a(PB)b The subscript c or p indicates whether K is expressed in terms of concentrations or pressures. Equilibrium-constant expressions do not include a term for any pure solids or liquids that may be involved since their...
At a certain temperature, this reaction establishes an equilibrium with the given equilibrium constant Kc. 3A...
At a certain temperature, this reaction establishes an equilibrium with the given equilibrium constant Kc. 3A + 2B -><- 4C kc=1.33x10^27 If at this temperature, 2.00 mol of A and 3.80 mol of B are placed in a 1.00L container, what are the concentrations of A, B, C at equilibrium?
. The equilibrium constant for the reaction below is 7.796 x 10-9. Calculate the equilibrium concentrations...
. The equilibrium constant for the reaction below is 7.796 x 10-9. Calculate the equilibrium concentrations of all species if the initial Co3+ concentration is 0.425 M and the initial SO42- concentration is 0.113 M. 2 Co3+(aq) + 2 SO42-(aq)→←     2 Co2+(aq) + S2O82-(aq)
At a certain temperature, this reaction establishes an equilibrium with the given equilibrium constant, Kc. 3A(g)...
At a certain temperature, this reaction establishes an equilibrium with the given equilibrium constant, Kc. 3A(g) + 2B(g) <===> 4C(g) K(c) = 2.93 x 10^(27) If, at this temperature, 2.40 mol of A and 3.70 mol of B are placed in a 1.00-L container, what are the concentrations of A, B, and C at equilibrium? [A] = ? M [B] = ? M [C] = ? M
At a certain temperature, this reaction establishes an equilibrium with the given equilibrium constant, Kc.   3A(g)...
At a certain temperature, this reaction establishes an equilibrium with the given equilibrium constant, Kc.   3A(g) + 2B(g) <------> 4C(g)   Kc= 3.13x 10^31 If, at this temperature, 1.90 mol of A and 4.00 mol of B are placed in a 1.00-L container, what are the concentrations of A, B, and C at equilibrium?
At a certain temperature, the equilibrium constant Kc for this reaction is 53.3 H2 + I2...
At a certain temperature, the equilibrium constant Kc for this reaction is 53.3 H2 + I2 ---> 2HI <--- at this temperature, 0.500 mol of H2 AND 0.500 mol of I2 were placed in 1.00L container to react. What concentration of HI is present at equilibrium? [HI]= ?M
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2 (g) ---> 2 HI (g) Kc= 53.3 At this temperature, 0.600 mol of H2 and 0.600 mol of I 2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
At a certain temperature the equilibrium constant, Kc, equals 0.11 for the reaction: 2 ICl(g) ⇌...
At a certain temperature the equilibrium constant, Kc, equals 0.11 for the reaction: 2 ICl(g) ⇌ I2(g) + Cl2(g). What is the equilibrium concentration of ICl if 0.45 mol of I2 and 0.45 mol of Cl2 are initially mixed in a 2.0-L flask?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT