Question

In: Math

Scores on an aptitude test are known to follow a normal distribution with a standard deviation...

Scores on an aptitude test are known to follow a normal distribution with a standard deviation of 32.4 points. A random sample of 12 test scores had a mean score of 189.7 points. Based on the sample results, a confidence interval for the population mean is found extending from 171.4 to 208 points. Find the confidence level of this interval.

Margin of Error (ME)= ?

Z-Score (Z-a/2)= ?

Confidence Level= ?

Solutions

Expert Solution

Solution :

Given that,

Lower confidence interval = 171.4

Upper confidence interval = 208

n = 12

  = (Lower confidence interval + Upper confidence interval ) / 2

= (171.4 + 208) / 2

= 379.4 / 2 = 189.7

= 189.7

Margin of error = E = Upper confidence interval -   = 208 - 189.7 = 18.3

Margin of error = 18.3

sample size = n = (Z/2* / E) 2

Z/2 = E * n / = 18.3 * 12 / 32.4 = 1.96

Z/2 = 1.96

= 0.05

Confidence level =1 - = 1 - 0.05 = 0.95 = 95%


Related Solutions

. It is known that scores on a certain IQ test follow a normal distribution with...
. It is known that scores on a certain IQ test follow a normal distribution with mean 100 and standard deviation 15. For the whole population of test-takers, what proportion of scores will be greater than 124.0? Also, the top 3% of test-takers will have scores greater than what value? Finally, consider a random group of 16 people who take the IQ test. For these 16 people, what is the probability that their average (mean) IQ score will be less...
The distribution of certain test scores is a nonstandard normal distribution with a mean of 50 and a standard deviation of 6
The distribution of certain test scores is a nonstandard normal distribution with a mean of 50 and a standard deviation of 6. What are the values of the mean and standard deviation after all test scores have been standardized by converting them to z-scores using z = (x - µ) / σ ?Select one:a. The mean is 1 and the standard deviation is 0.b. The mean is 0 and the standard deviation is 1.c. The mean is 100 and the...
The designer of a 100-point aptitude test wishes test scores to have a standard deviation of...
The designer of a 100-point aptitude test wishes test scores to have a standard deviation of 10. He gives the test to 25 randomly selected college students in order to test the null-hypothesis σ²=100 against the alternative hypothesis σ² ≠ 100 at the level α= .02. Suppose he found s²= 70. Perform an appropriate hypothesis test.
Students’ scores on a test in a public administration course follow a normal distribution with a...
Students’ scores on a test in a public administration course follow a normal distribution with a mean of 150 points and a standard deviation of 12. One student who scored 161 on the test and received the grade of B is considering protesting his grade. He feels that the professor did not like him and awarded him a lower grade than his score deserved. The professor disagrees: She maintains that the top 10 percent of scores were given an A,...
The heights of elementary school students are known to follow a normal distribution with mean 121 cm and standard deviation 5 cm.
The next two questions (18 and 19) refer to the following: The heights of elementary school students are known to follow a normal distribution with mean 121 cm and standard deviation 5 cm. Question 18 (1 point) Saved What is the 60th percentile of heights of elementary school students? Question 18 options: 122.68 cm 124.00 cm 124.63 cm 122.25 cm 125.21 cm Question 19 (1 point) Saved A random sample of eight elementary school students is selected. What is the...
Scores for a common standardized college aptitude test are normally distributed with a mean of 515 and a standard deviation of 113.
Scores for a common standardized college aptitude test are normally distributed with a mean of 515 and a standard deviation of 113. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect.A. If 1 of the men is randomly selected, find the probability that his score is at least 584.2.P(X > 584.2) =  Round to 4 decimal places.NOTE: Answers obtained using exact z-scores or z-scores rounded to...
Scores on the SAT critical reading test in 2015 follow a Normal distribution with a mean...
Scores on the SAT critical reading test in 2015 follow a Normal distribution with a mean of 495 and a standard deviation of 116 a. What proportion of students who took the SAT critical reading test had scores above 600? b. What proportion of students who took the SAT critical reading test had scores between 400 and 600? c. Jacob took the SAT critical reading test in 2015 and scored a 640. Janet took the ACT critical reading test which...
The ACT is a college entrance exam. ACT test scores follow a normal distribution with a...
The ACT is a college entrance exam. ACT test scores follow a normal distribution with a mean of 22.2 points and a standard deviation of 4.9 points. Let X = number of points scored on the ACT. Answer the following questions. A. Jasmine scored a 28.227 on the ACT. Calculate Jasmine's Z-score. B. Interpret Jasmine's z-score in terms of the problem. C. What is the probability that a randomly selected individual gets an ACT score that is lower than Jasmine's?...
The scores of fourth grade students on a mathematics achievement test follow a normal distribution with...
The scores of fourth grade students on a mathematics achievement test follow a normal distribution with a mean of 75 and standard deviation of 4. What is the probability that a single student randomly chosen form all those taking the test scores 80 or higher? What is the probability that the sample mean score of 64 randomly selected student is 80 or higher?
Suppose the scores of a certain high school diploma test follow a normal distribution in the...
Suppose the scores of a certain high school diploma test follow a normal distribution in the population with a mean of 195 and standard deviation of 30. 1. About ______ percent of the students have a score between 135 and 195. 2. About ______ percent of the students have a score between 225 and 255. 3. The middle 95% of the students have a score between ________  and ________   . 4. Recently class A just had a Math exam, but class B...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT