Question

In: Statistics and Probability

The ACT is a college entrance exam. ACT test scores follow a normal distribution with a...

The ACT is a college entrance exam. ACT test scores follow a normal distribution with a mean of 22.2 points and a standard deviation of 4.9 points. Let X = number of points scored on the ACT. Answer the following questions.

A. Jasmine scored a 28.227 on the ACT. Calculate Jasmine's Z-score.

B. Interpret Jasmine's z-score in terms of the problem.

C. What is the probability that a randomly selected individual gets an ACT score that is lower than Jasmine's? Round your answer to four decimal places.

D. What is the probability that a randomly selected individual gets a score greater than Jasmine's? Round answers to four decimal places.

E. What is the probability that a randomly selected individual scores between 18.378 and 28.864 points? Round answers to four decimal places.

Solutions

Expert Solution


Related Solutions

Scores on a certain nationwide college entrance examination follow a normal distribution with a mean of...
Scores on a certain nationwide college entrance examination follow a normal distribution with a mean of 500 and a standard deviation of 100. Find the probability that a student will score... a) over 650 b) less than 459 c) between 325 and 675 d) If a school only admits students who score over 680, what proportion of the student's pool would be eligible for admission? e) what limit (score) would you set that makes the top 20% of the students...
Scores on a certain nationwide college entrance examination follow a normal distribution with a mean of...
Scores on a certain nationwide college entrance examination follow a normal distribution with a mean of 500 and a standard deviation of 100. Find the probability that a student will score... a) over 650 b) less than 459 c) between 325 and 675 d) If a school only admits students who score over 680, what proportion of the student's pool would be eligible for admission? e) what limit (score) would you set that makes the top 20% of the students...
Suppose the test scores for a college entrance exam are normally distributed with a mean of...
Suppose the test scores for a college entrance exam are normally distributed with a mean of 450 and a s. d. of 100. a. What is the probability that a student scores between 350 and 550? b. If the upper 3% scholarship, what score must a student receive to get a scholarship? c. Find the 60th percentile of the test scores. d. Find the middle 30% of the test scores.
Test scores from a college math course follow a normal distribution with mean = 72 and...
Test scores from a college math course follow a normal distribution with mean = 72 and standard deviation = 8 Let x be the test score. Find the probability for a) P(x < 66) b) P(68<x<78) c) P(x>84) d) If 600 students took this test, how many students scored between 62 and 72?
. It is known that scores on a certain IQ test follow a normal distribution with...
. It is known that scores on a certain IQ test follow a normal distribution with mean 100 and standard deviation 15. For the whole population of test-takers, what proportion of scores will be greater than 124.0? Also, the top 3% of test-takers will have scores greater than what value? Finally, consider a random group of 16 people who take the IQ test. For these 16 people, what is the probability that their average (mean) IQ score will be less...
Suppose scores on a college entrance exam are normally distributed with a mean of 550 and...
Suppose scores on a college entrance exam are normally distributed with a mean of 550 and a standard deviation of 100. Find the score that marks the cut-off for the top 16% of the scores. Round to two decimal places. Question 5 options: 450.55 649.45 462.89 508.34 Question 6 (1 point) Suppose scores on a college entrance exam are normally distributed with a mean of 550 and a standard deviation of 100. Find the cut-off scores that define the middle...
Students’ scores on a test in a public administration course follow a normal distribution with a...
Students’ scores on a test in a public administration course follow a normal distribution with a mean of 150 points and a standard deviation of 12. One student who scored 161 on the test and received the grade of B is considering protesting his grade. He feels that the professor did not like him and awarded him a lower grade than his score deserved. The professor disagrees: She maintains that the top 10 percent of scores were given an A,...
Scores on an aptitude test are known to follow a normal distribution with a standard deviation...
Scores on an aptitude test are known to follow a normal distribution with a standard deviation of 32.4 points. A random sample of 12 test scores had a mean score of 189.7 points. Based on the sample results, a confidence interval for the population mean is found extending from 171.4 to 208 points. Find the confidence level of this interval. Margin of Error (ME)= ? Z-Score (Z-a/2)= ? Confidence Level= ?
he scores of students on the ACT (American College Testing) college entrance examination in a recent...
he scores of students on the ACT (American College Testing) college entrance examination in a recent year had the normal distribution with mean μ = 18 and standard deviation σ = 6. 100 students are randomly selected from all who took the test. a. What is the probability that the mean score for the 100 students is between 17 and 19 (including 17 and 19)? b. A student is eligible for an honor program if his/her score is higher than...
The scores of students on the ACT (American College Testing)college entrance examination in a recent year...
The scores of students on the ACT (American College Testing)college entrance examination in a recent year had the normal distribution with meanμ= 18 and standard deviationσ= 6. 100 students are randomly selected from all who took the test a.What is the probability that the mean score for the 100 students is between 17and 19 (including 17 and 19)? b.A student is eligible for an honor program if his/her score is higher than 25.Find an approximation to the probability that at...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT