Question

In: Math

The distribution of certain test scores is a nonstandard normal distribution with a mean of 50 and a standard deviation of 6


The distribution of certain test scores is a nonstandard normal distribution with a mean of 50 and a standard deviation of 6. What are the values of the mean and standard deviation after all test scores have been standardized by converting them to z-scores using z = (x - µ) / σ ?

Select one:

a. The mean is 1 and the standard deviation is 0.

b. The mean is 0 and the standard deviation is 1.

c. The mean is 100 and the standard deviation of 10.

d. The mean is 10 and the standard deviation is 100.


Solutions

Expert Solution


Related Solutions

Scores on an aptitude test are known to follow a normal distribution with a standard deviation...
Scores on an aptitude test are known to follow a normal distribution with a standard deviation of 32.4 points. A random sample of 12 test scores had a mean score of 189.7 points. Based on the sample results, a confidence interval for the population mean is found extending from 171.4 to 208 points. Find the confidence level of this interval. Margin of Error (ME)= ? Z-Score (Z-a/2)= ? Confidence Level= ?
Consider a normal distribution with a mean of 50 and standard deviation of 10. Which of...
Consider a normal distribution with a mean of 50 and standard deviation of 10. Which of the following is FALSE? Question 4 options: P(x<=50) = .50 P(x>=40) = 1-P(x<40) P(x<=20)+P(x<=20) = P(x<=40) P(x<=30) = P(x>=70)
Given a normal distribution with A MEAN of 50 and standard deviation of 4, what is...
Given a normal distribution with A MEAN of 50 and standard deviation of 4, what is the probability that: a. X > 45? b. X < 43? c. Six percent of the values are less than what X value? d. Between what two X values (symmetrically distributed around the mean) are sixty-five percent of the values?
Scores on the SAT exam approximate a normal distribution with mean 500 and standard deviation of...
Scores on the SAT exam approximate a normal distribution with mean 500 and standard deviation of 80. USe the distribution to determine the following. (Z score must be rounded to two decimal places: (a) The Z- score for a SAT of 380 (2pts) (b) The percent of SAT scores that fall above 610 (3pts) (c) The prpbability that sn SAT score falls below 720 (3pts) (d) The percentage of SAT scores that fall between 470 and 620 (4pts)
The mean of a normal probability distribution is 460; the standard deviation is 6. a. About...
The mean of a normal probability distribution is 460; the standard deviation is 6. a. About 68% of the observations lie between what two values? Lower Value            Upper Value            b. About 95% of the observations lie between what two values? Lower Value            Upper Value            c. Nearly all of the observations lie between what two values? Lower Value            Upper Value           
Scores of female tests had a mean of 63% (assume normal distribution with a standard deviation...
Scores of female tests had a mean of 63% (assume normal distribution with a standard deviation of 10%). A. A girl is randomly selected from all females whose scores are higher than 75%. What is the probability that the girls score is higher than 96%. B. One thousand people are randomly selected. What is the probability that fewer than 100 of them have a score higher than 75%? Use normal approximation of binomial distribution. The weight of adult males are...
Given a normal distribution with (mean) μ= 50 and (standard deviation) σ = 4, what is...
Given a normal distribution with (mean) μ= 50 and (standard deviation) σ = 4, what is the probability that NOTE: I'd like to learn how to do this in the shortest way possible on ti 84 plus calculator. a) x>43 b) x<42 c) x>57.5 d) 42 <x<48 e) x<40 or x>55 f) 5% of the values are less than what X value? g) 60% of the values are between what two X values (symmetrically distributed around the mean)? h) 85%...
Problem 8 IQ scores have a normal distribution with mean µ = 100 and standard deviation...
Problem 8 IQ scores have a normal distribution with mean µ = 100 and standard deviation σ = 15. (A) Find the probability that the IQ score of a randomly selected person is smaller than 107. (B) Find the 95th percentile of IQ scores.
. It is known that scores on a certain IQ test follow a normal distribution with...
. It is known that scores on a certain IQ test follow a normal distribution with mean 100 and standard deviation 15. For the whole population of test-takers, what proportion of scores will be greater than 124.0? Also, the top 3% of test-takers will have scores greater than what value? Finally, consider a random group of 16 people who take the IQ test. For these 16 people, what is the probability that their average (mean) IQ score will be less...
What is the standard deviation of the standard normal distribution? What is the mean of the...
What is the standard deviation of the standard normal distribution? What is the mean of the standard normal distribution? All symmetric distributions are normal distributions. True or false? Assume body temperature scores are normally distributed in the population with a mean of 36.81°C and a standard deviation of 0.41°C. A person's body temperature is 37.33°C. Calculate their z-score. (Round answer to 2 decimal places) Calculate the z-score for a person who has a body temperature of 35.72°C. (Round answer to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT