In: Civil Engineering
The SIA Capstone Paper must be a minimum of 2000 words in length which includes references. There is no maximum length. The paper "Engineering Ethics and Its Impact on Society" found on the Course Home Page is a good example of the writing style and citation format expected in your Capstone Paper.
THE SIA Capstone PaperTopic
Ethics of Cloning
The role of engineering and its impact on the health, welfare and safety of the public cannot be overstated. Ethical and professional conduct on the part of engineers requires an often delicate balance of moral reasoning, standards, legal relevance, safety, costs, benefits and risk assessment.
The Association for Practical and Professional Ethics includes engineering ethics as a field of applied ethics that consists of a system of moral principles that apply to the practice of engineering. Engineering ethics sets forth the obligations of engineers to society, to their clients, and to the profession.
Ethical dilemmas faced by practicing engineers are more difficult to resolve than is generally understood, and they are typically multidimensional. They impact a wide range of stakeholders and decisions about ‘doing the right thing’ often fall into a gray area that is ambiguous at best, and catastrophic at worst. It is important to understand the nuances of different approaches to ethical evaluation and decision making. A decision that is the right thing to do for a large majority of stakeholders may have a disproportionately negative impact on a small minority. The ethical principle of ‘utilitarianism’ - which takes the position that the right decision is the one that results in the greatest good for the greatest number of stakeholders- does not necessarily result in the best ethical choice. Alternative ethical principles such as ‘respect for persons’ and ‘virtue ethics’ may yield better ethical decisions when resolving complex dilemmas. Respect for persons recognizes that everyone has the right to ethical treatment regardless of their status in society. Virtue ethics recognizes that engineers, by virtue of their specialized knowledge, have obligations to protect the health, welfare and safety of the public. A key observation is that ‘intuition’ is often not a reliable method for making ethical decisions.
A serious conflict of interest arises when a design engineer knows the right ethical decision to make but upper management overrides that decision. After exhausting all appeals to upper management, the engineer may be confronted with a significant personal dilemma. The engineer may consider “whistle blowing.”
Even though there are various laws in place to protect whistle blowers, they rarely shield the person involved from potentially catastrophic financial and career risk. The engineer may be required to make a difficult, and unfair choice between fulfilling their obligations as an engineer and putting their family’s financial well-being at risk.
Modern society is dramatically impacted by advances in technology. Current examples include, but are certainly not limited to, self-driving automobiles, electric automobiles, autonomous robots, artificial intelligence, broadband internet, social media, cyber warfare, remotely piloted drones, smart phones, tablet computers, deep sea drilling, ‘fracking’, etc. The list is endless and we see changes on a seemingly daily basis. One aspect of many of the recent and prominently technological changes is a vast array of unintended consequences that the designers never anticipated. Unintended consequences frequently overshadow the anticipated benefits designers of a new technology had in mind. While many unintended consequences may have tremendous positive impacts on society, others may not. Ethical considerations must be included in every step of the design, documentation and deployment process to help anticipate and mitigate negative consequences. One approach to accomplishing this is to conduct a Social Impact Analysis (SIA) as a formal part of the engineering design documentation process. This is a multi-dimensional team effort that is not restricted to engineers. The team should include representatives from all relevant organizational stakeholders in addition to a person whose education, focus and expertise are specific to ethical process evaluation and decision making.
It is often necessary to make changes to the SIA analysis as the design and deployment process evolves. Most often, the earlier in the design and deployment process that an ethical issue is identified and addressed, the less costly it will be to fix in the long run. A worst case scenario is the requirement to address a safety issue after a project has been deployed. The news media are filled with examples where better ethical decision making during the design and deployment process might have prevented injuries, saved lives, and avoided millions of dollars in institutional liability settlements.
Engineers often represent multiple internal and or external stakeholders in a firm, corporation or government agency. They may begin their careers as practicing engineers but may progress into upper level administrative and engineering management positions. At each stage of their careers their loyalties may change. Engineers who are specifically charged with design development are often not the individuals who bear the ultimate responsibility for the profitability of the final design and deployment of a concept or product. It is often the case that a senior engineering manager will have overall profit responsibility but not the technical competence to sign off on work prepared by other design engineers. If a subordinate engineer’s design negatively impacts the profitability of the overall project, a decision may be made by upper engineering management to change a design specification to reduce cost. This cost reduction may negatively impact the health, welfare and safety of the public. Just because it is legal to make these changes to improve profitability doesn’t mean it is ethical.
While professional engineers often practice their profession largely out of the public eye, the benefits of their efforts are visible all around us. Being an ethical and professional engineer can be very difficult at times. Universities and professional organizations are getting better at providing practicing engineers with the continuing education needed to make sound ethical decisions. The elephant in the room that no one wants to recognize is the lack of protection for engineers who are asked to put their careers and livelihoods on the line to do the right thing. Protections must be put in place to ensure that engineers are protected under these circumstances. Failing to provide these protections puts everyone at risk.