Question

In: Electrical Engineering

A 60-Hz, 208-V, 2 pole wye connected induction motor is rated at 15hp. The equivalent parameters...

A 60-Hz, 208-V, 2 pole wye connected induction motor is rated at 15hp. The equivalent
parameters are as follows:
RS = 0.2 Ω RR’ = 0.120 Ω
XS = XR’ = 0.41 Ω Xm = 15 Ω
The machine has negligible miscellaneous losses but experiences mechanical loss
and core loss of 250 W and 180 W, respectively. For a slip of 5 %, determine
a) The line current. (44.8  -25.5  A)
b) The stator copper losses (1.205 kW)
c) The air-gap power (13.4 kW)
d) The converted power (12.73 kW)
e) The induced torque (35.5 N.m.)
f) The motor speed in rad/s (358 rad/s)
g) The load torque (34.3 N.m.)
h) The overall machine efficiency (84.5 %)

Solutions

Expert Solution


Related Solutions

A 50-Hz, 440-V, 2 pole wye connected induction motor is rated at 75 kW. The equivalent...
A 50-Hz, 440-V, 2 pole wye connected induction motor is rated at 75 kW. The equivalent parameters are as follows: RS = 0.075 Ω RR’ = 0.065 Ω XS = XR’ = 0.17 Ω Xm = 7.2 Ω The losses associated with the machine are field and winding, miscellaneous and core loss with values of 1 kW, 150 W and 1.1 kW, respectively. For a slip of 4 %, determine a) The line current. (150.39  -23.08 A) b) The...
A 50-Hz, 440-V, 6 pole wye connected induction motor is rated at 75 kW. The equivalent...
A 50-Hz, 440-V, 6 pole wye connected induction motor is rated at 75 kW. The equivalent parameters are as follows: RS = 0.082 Ω; RR’ = 0.07 Ω; XS = 0.19 Ω; XR’ = 0.18 Ω; XM = 7.2 Ω The losses associated with the machine are field and winding, miscellaneous and core loss with values of 1.3 kW, 150 W and 1.4 kW, respectively. For a slip of 4 %, determine: a) The line current b) The stator power...
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following...
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following equivalent circuit parameters. Rs = 0.42 Ω, Rr = 0.23 Ω, Xs = Xr = 0.82 Ω. Xm = 22 Ω. The no load loss = 60 W and may be assumed constant. The rotor speed is 1750 rpm. Use the approximate equivalent circuit ( i.e. the Xm branch is at the very left of the circuit) determine the following a. the synchronous speed...
A Y- connected, 460- V, 1710- rpm, 60- Hz, 4- pole squirrel cage induction motor has...
A Y- connected, 460- V, 1710- rpm, 60- Hz, 4- pole squirrel cage induction motor has a rotor current at starting 6 times the rotor current at full load. Calculate: a. The starting torque as percent of full load torque. b. The slip and speed at which the motor develops maximum torque. c. The maximum torque developed b the motor as percent of its full load value.
Q3) A three-phase, Y-connected, 220 V, 13 kW, 60 Hz, six-pole induction motor has the following...
Q3) A three-phase, Y-connected, 220 V, 13 kW, 60 Hz, six-pole induction motor has the following parameter values in Ω/phase referred to the stator: R1 = 0.3 Ω. R2' = 0.15 Ω X1 = 0.5 Ω. X2'= 0.21 Ω Xm = 13.25 Ω The total rotational losses are 450 W. The core loss is lumped in with the rotational losses. For a slip of 0.02, and based on approximate equivalent circuit, determine: (i) The rotor speed. (ii) The stator current....
A   three-phase,   460-V,   60-Hz,   six-pole   Y-connected   induction   motor   has   Rs = 0.32 Ω, R′ r =...
A   three-phase,   460-V,   60-Hz,   six-pole   Y-connected   induction   motor   has   Rs = 0.32 Ω, R′ r = 0.18 Ω, Xs = 1.04 Ω, X′ r = 1.6 Ω,   and   Xm = 18.8 Ω.   The   no-load   loss,   Pno load,   is   negligible.   The   load   torque,   which   is   proportional   to   speed   squared,   is   180 N#m   at   1180   rpm.   If   the   motor   speed   is   850   rpm,   determine   (a)   the   load   torque   demand   TL; (b)   the   rotor   current   I′ r; (c)   the   stator   supply   voltage   Va;...
The parameters of a 3-phase, 4-pole, 50 Hz, Y-connected, wound-rotor induction motor are listed below. These...
The parameters of a 3-phase, 4-pole, 50 Hz, Y-connected, wound-rotor induction motor are listed below. These are the default values of the “Asynchronous Machine” model in MATLAB Simulink. r1=0.5968 ?; r2=0.6258 ?; L1=0.0003495 H; L2=0.005473 H; Lm=0.0354 H; Stator line voltage = 400 V rms. The motor for rotor speeds nm= 0 to 1500 rpm. X1= 0.1097 ohm, X2= 1.719 ohm , Xm= 11.12 ohm, RTH = 0.5853 , XTH = 0.1395 and VTH = 230.82 V. Suppose the motor...
A 3-phase, 380 V, 50 Hz , 6 pole, Y-connected induction motor has R1 = 0.1...
A 3-phase, 380 V, 50 Hz , 6 pole, Y-connected induction motor has R1 = 0.1 W , X1 = 0.4 W, R2’ = 0.12 W , X2’ = 0.4 W, Xm = 20 W , Pr = 1 kW. The motor is operated at 970 rpm what is the efficiency?
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF...
A 400V, 2 pole, 50 Hz, three-phase induction motor is drawing 60 A at 0.85 PF lagging. The stator copper losses are 2 kW, the stator core losses are 1.8 kW and rotor copper losses are 700 W. The friction and windage losses are 600 W, the stray loss 100 W, and rotor core loss 100 W. Find the following quantities: a. The air gap power. b. The developed mechanical power. c. The output power. d. The efficiency of the...
Tests were carried out on a three-phase 220 V, 50 Hz, 4-pole delta-connected induction motor. The...
Tests were carried out on a three-phase 220 V, 50 Hz, 4-pole delta-connected induction motor. The following results were obtained from open circuit (no-load) and short circuit tests.             Open Circuit (no-load) Test Applied Stator Voltage VLine (V) Stator Line Current ILine (A) Total Input Power Pin (W) 240 9.6 536 220 7.2 420 200 5.4 352 180 4.3 304 160 3.5 276 140 3.0 248 120 2.5 224             Short Circuit (locked rotor) Test Applied Stator Voltage VLine (V) Stator Line...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT