In: Finance
Miller Corporation has a premium bond making
semiannual payments. The bond pays a coupon of 12 percent, has
a YTM of 10 percent, and has 18 years to maturity. The Modigliani
Company has a discount bond making semiannual payments. This bond
pays a coupon of 10 percent, has a YTM of 12 percent, and also has
18 years to maturity.
What is the price of each bond today? (Do not
round intermediate calculations and round your answers to 2 decimal
places, e.g., 32.16.)
If interest rates remain unchanged, what do you expect
the prices of these bonds to be 1 year from now? In 7 years? In 12
years? In 16 years? In 18 years? (Do not round intermediate
calculations and round your answers to 2 decimal places, e.g.,
32.16.)
Price of bond = C x [1-{1/ (1+r) n}/r] +M/ (1+r) n
C = Coupon amount = (Face Value x Coupon rate) / No. of coupon payments annually
r = Rate of interest, n = No of periods to maturity
M = Face Value = $ 1,000 (assumed)
Bond Price of Miller Corporation:
C = ($ 1,000 x 12 %)/2 = $ 120/2 = $ 60
r = 10 % p.a. or 0.1/2 = 0.05 semiannually
n = 18 yrs x 2 periods = 36 periods
Bond Price = $ 60 x [1-{1/ (1+0.05)36}/0.05 ] + $ 1,000/ (1+0.05) 36
= $ 60 x [1-{1/ (1.05) 36}/0.05] + $ 1,000/ (1.05) 36
= $ 60 x [1-(1/ 5.79181613597186)/0.05] + $ 1,000/ 5.79181613597186
= $ 60 x [(1- 0.172657414621502)/0.05] + $ 172.657414621502
= $ 60 x (0.827342585378498/0.05) + $ 172.657414621502
= $ 60 x 16.54685170757 + $ 172.657414621502
= $ 992.811102454197 + $ 172.657414621502
= $ 1,165.4685170757 or $ 1,165.47
Bond Price of Modigliani Company:
C = ($ 1,000 x 10 %)/2 = $ 100/2 = $ 50
r = 12 % p.a. or 0.1/2 = 0.06 semiannually
n = 18 yrs x 2 periods = 36 periods
Bond Price = $ 50 x [1-{1/ (1+0.06)36}/0.06 ] + $ 1,000/ (1+0.06) 36
= $ 50 x [1-{1/ (1.06) 36}/0.06] + $ 1,000/ (1.06) 36
= $ 50 x [1-(1/ 8.14725199985109)/0.06] + $ 1,000/ 8.14725199985109
= $ 50 x [(1- 0.122740771982784)/0.06] + $ 122.740771982784
= $ 50 x (0.877259228017216/0.06) + $ 122.740771982784
= $ 50 x 14.6209871336203 + $ 122.740771982784
= $ 731.049356681014 + $ 122.740771982784
= $ 853.790128663797 or $ 853.79
Current bond price of Miller Corporation is $ 1,165.47 and that of Modigliani Company is $ 853.79
Bond price can also be computed using PV factor table values as:
Bond price = C x PVIFA(r, n) + F x PVIF(r, n)
Bond Price change for Miller Corporation:
n = (18-1) x 2 = 17 x 2 = 34
Bond price = $ 60 x PVIFA (5 %, 34) + $ 1,000 x PVIF (5 %, 34)
= $ 60 x 16.192904 + $ 1,000 x 0.190355
= $ 971.57424 + $ 190.355 = $ 1,161.92904 or $ 1,161.93
n = (18 – 7) x 2 = 11 x 2 = 22
Bond price = $ 60 x PVIFA (5 %, 22) + $ 1,000 x PVIF (5 %, 22)
= $ 60 x 13.163003 + $ 1,000 x 0.34185
= $ 789.78018 + $ 341.85 = $ 1,131.63018 or $ 1,131.63
n = (18 – 12) x 2 = 6 x 2 = 12
Bond price = $ 60 x PVIFA (5 %, 12) + $ 1,000 x PVIF (5 %, 12)
= $ 60 x 8.86325 + $ 1,000 x 0.556837
= $ 531.795 + $ 556.873 = $ 1,088.63242 or $ 1,088.63
n = (18 – 16) x 2 = 2 x 2 = 4
Bond price = $ 60 x PVIFA (5 %, 4) + $ 1,000 x PVIF (5 %, 4)
= $ 60 x 3.5460 + $ 1,000 x 0.8227
= $ 212.76 + $ 822.7 = $ 1,035.46
n = (18 – 18) x 2 = 0
Bond price = $ 1,000
Bond Price change for Modigliani Company:
n = (18-1) x 2 = 17 x 2 = 34
Bond price = $ 50 x PVIFA (6 %, 34) + $ 1,000 x PVIF (6 %, 34)
= $ 50 x 14.3681 + $ 1,000 x 0.13791
= $ 718.405 + $ 137.91 = $ 856.315 or $ 856.32
n = (18 – 7) x 2 = 11 x 2 = 22
Bond price = $ 50 x PVIFA (6 %, 22) + $ 1,000 x PVIF (6 %, 22)
= $ 50 x 12.04158 + $ 1,000 x 0.2775
= $ 602.08 + $ 277.50 = $ 879.58
n = (18 – 12) x 2 = 6 x 2 = 12
Bond price = $ 50 x PVIFA (6 %, 12) + $ 1,000 x PVIF (6 %, 12)
= $ 50 x 8.38384 + $ 1,000 x 0.49697
= $ 419.192 + $ 496.97 = $ 916.162 or $ 916.16
n = (18 – 16) x 2 = 2 x 2 = 4
Bond price = $ 50 x PVIFA (6 %, 4) + $ 1,000 x PVIF (6 %, 4)
= $ 50 x 3.46511+ $ 1,000 x 0.792094
= $ 173.2555 + $ 792.094 = $ 965.3495 or $ 965.35
n = (18 – 18) x 2 = 0
Bond price = $ 1,000