In: Finance
Miller Corporation has a premium bond making semiannual
payments. The bond has a coupon rate of 7 percent, a YTM of 5
percent, and 19 years to maturity. The Modigliani Company has a
discount bond making semiannual payments. This bond has a coupon
rate of 5 percent, a YTM of 7 percent, and also has 19 years to
maturity. Both bonds have a par value of $1,000.
What is the price of each bond today? (Do not round
intermediate calculations. Round your answers to 2 decimal places,
e.g., 32.16.)
Price of Miller bond | $ | |
Price of Modigliani bond | $ | |
If interest rates remain unchanged, what do you expect the price of
these bonds to be 1 year from now? In 10 years? In 14 years? In 18
years? In 19 years? (Do not round intermediate
calculations. Round your answers to 2 decimal places, e.g.,
32.16.)
Price of bond in: | Miller bond | Modigliani bond | ||
1 year | $ | $ | ||
10 years | $ | $ | ||
14 years | $ | $ | ||
18 years | $ | $ | ||
19 years | $ | $ | ||
Miller bond
Price today
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =19x2 |
Bond Price =∑ [(7*1000/200)/(1 + 5/200)^k] + 1000/(1 + 5/200)^19x2 |
k=1 |
Bond Price = 1243.49 |
1 year
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =18x2 |
Bond Price =∑ [(7*1000/200)/(1 + 5/200)^k] + 1000/(1 + 5/200)^18x2 |
k=1 |
Bond Price = 1235.56 |
10 years
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =9x2 |
Bond Price =∑ [(7*1000/200)/(1 + 5/200)^k] + 1000/(1 + 5/200)^9x2 |
k=1 |
Bond Price = 1143.53 |
14 years
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =5x2 |
Bond Price =∑ [(7*1000/200)/(1 + 5/200)^k] + 1000/(1 + 5/200)^5x2 |
k=1 |
Bond Price = 1087.52 |
18 years
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =1x2 |
Bond Price =∑ [(7*1000/200)/(1 + 5/200)^k] + 1000/(1 + 5/200)^1x2 |
k=1 |
Bond Price = 1019.27 |
19 years
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =0x2 |
Bond Price =∑ [(7*1000/200)/(1 + 5/200)^k] + 1000/(1 + 5/200)^0x2 |
k=1 |
Bond Price = 1000 |
Modigliani bond
Price today
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =19x2 |
Bond Price =∑ [(5*1000/200)/(1 + 7/200)^k] + 1000/(1 + 7/200)^19x2 |
k=1 |
Bond Price = 791.59 |
1 year
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =18x2 |
Bond Price =∑ [(5*1000/200)/(1 + 7/200)^k] + 1000/(1 + 7/200)^18x2 |
k=1 |
Bond Price = 797.1 |
10 years
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =9x2 |
Bond Price =∑ [(5*1000/200)/(1 + 7/200)^k] + 1000/(1 + 7/200)^9x2 |
k=1 |
Bond Price = 868.1 |
14 years
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =5x2 |
Bond Price =∑ [(5*1000/200)/(1 + 7/200)^k] + 1000/(1 + 7/200)^5x2 |
k=1 |
Bond Price = 916.83 |
18 years
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =1x2 |
Bond Price =∑ [(5*1000/200)/(1 + 7/200)^k] + 1000/(1 + 7/200)^1x2 |
k=1 |
Bond Price = 981 |
19 years
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =0x2 |
Bond Price =∑ [(5*1000/200)/(1 + 7/200)^k] + 1000/(1 + 7/200)^0x2 |
k=1 |
Bond Price = 1000 |