In: Finance
| 
 Miller Corporation has a premium bond making semiannual payments. The bond has a coupon rate of 10 percent, a YTM of 8 percent, and 16 years to maturity. The Modigliani Company has a discount bond making semiannual payments. This bond has a coupon rate of 8 percent, a YTM of 10 percent, and also has 16 years to maturity.  | 
| 
 What is the price of each bond today? (Do not round intermediate calculations. Round your answers to 2 decimal places (e.g., 32.16).)  | 
| Price of Miller bond | $ | 
| Price of Modigliani bond | $ | 
| 
 If interest rates remain unchanged, what do you expect the price of these bonds to be 1 year from now? In 7 years? In 11 years? In 15 years? In 16 years? (Do not round intermediate calculations. Round your answers to 2 decimal places (e.g., 32.16).)  | 
| Price of bond in: | Miller bond | Modigliani bond | 
| 1 year | $ | $ | 
| 7 years | $ | $ | 
| 11 years | $ | $ | 
| 15 years | $ | $ | 
| 16 years | $ | $ | 
Miller bond
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =16x2 | 
| Bond Price =∑ [(10*1000/200)/(1 + 8/200)^k] + 1000/(1 + 8/200)^16x2 | 
| k=1 | 
| Bond Price = 1178.74 | 
Price in:
1 year
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =15x2 | 
| Bond Price =∑ [(10*1000/200)/(1 + 8/200)^k] + 1000/(1 + 8/200)^15x2 | 
| k=1 | 
| Bond Price = 1172.92 | 
7 year
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =9x2 | 
| Bond Price =∑ [(10*1000/200)/(1 + 8/200)^k] + 1000/(1 + 8/200)^9x2 | 
| k=1 | 
| Bond Price = 1126.59 | 
11 year
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =5x2 | 
| Bond Price =∑ [(10*1000/200)/(1 + 8/200)^k] + 1000/(1 + 8/200)^5x2 | 
| k=1 | 
| Bond Price = 1081.11 | 
15 year
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =1x2 | 
| Bond Price =∑ [(10*1000/200)/(1 + 8/200)^k] + 1000/(1 + 8/200)^1x2 | 
| k=1 | 
| Bond Price = 1018.86 | 
16 year
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =0x2 | 
| Bond Price =∑ [(10*1000/200)/(1 + 8/200)^k] + 1000/(1 + 8/200)^0x2 | 
| k=1 | 
| Bond Price = 1000 | 
Modigliani bond
Price in:
1 year
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =15x2 | 
| Bond Price =∑ [(8*1000/200)/(1 + 10/200)^k] + 1000/(1 + 10/200)^15x2 | 
| k=1 | 
| Bond Price = 846.28 | 
7 year
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =9x2 | 
| Bond Price =∑ [(8*1000/200)/(1 + 10/200)^k] + 1000/(1 + 10/200)^9x2 | 
| k=1 | 
| Bond Price = 883.1 | 
11 year
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =5x2 | 
| Bond Price =∑ [(8*1000/200)/(1 + 10/200)^k] + 1000/(1 + 10/200)^5x2 | 
| k=1 | 
| Bond Price = 922.78 | 
15 year
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =1x2 | 
| Bond Price =∑ [(8*1000/200)/(1 + 10/200)^k] + 1000/(1 + 10/200)^1x2 | 
| k=1 | 
| Bond Price = 981.41 | 
16 year
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =0x2 | 
| Bond Price =∑ [(8*1000/200)/(1 + 10/200)^k] + 1000/(1 + 10/200)^0x2 | 
| k=1 | 
| Bond Price = 1000 |