Question

In: Mechanical Engineering

what is system functional decomposition ? if we add spring and damper in series and parallel

what is system functional decomposition ?

if we add spring and damper in series and parallel

Solutions

Expert Solution

Ans a.) System Decomposition : A method of business analysis that dissects a complex business process to show its individual elements. Functional decomposition is used to facilitate the understanding and management of large and/or complex processes and can be used to help solve problems. Functional decomposition is also used in computer engineering to help with software design.

Functional decomposition in systems engineering refers to the process of defining a system in functional terms, then defining lower-level functions and sequencing relationships from these higher level systems functions.[1] The basic idea is to try to divide a system in such a way that each block of a block diagram can be described without an "and" or "or" in the description.

This exercise forces each part of the system to have a pure function. When a system is designed as pure functions, they can be reused, or replaced. A usual side effect is that the interfaces between blocks become simple and generic. Since the interfaces usually become simple, it is easier to replace a pure function with a related, similar function.

For example, say that one needs to make a stereo system. One might functionally decompose this into speakers, amplifier, a tape deck and a front panel. Later, when a different model needs an audio CD, it can probably fit the same interfaces.

Ans b.) springs in parallel

Let two springs with spring constant k1 and k2 are connected in parallel, then resultant spring cont k will be equal to sum of both that is k = k1+k2

springs in Series

Let two springs with spring constant k1 and k2 are connected in series, then resultant spring cont k will be equal to

(1/k)= (1/k1)+(1/k2)

the same results follows for dampers


Related Solutions

break down of the system in sub system? when we are adding spring and damper in...
break down of the system in sub system? when we are adding spring and damper in series and parallel in second order system
3. Consider the following system made up of functional components in parallel and series. C2 0.80...
3. Consider the following system made up of functional components in parallel and series. C2 0.80 C1 0.95 C3 0.95 C4 0.80 3-1. (2 points) What is the probability that the system operates? Answer: .   3-2. (2 points) What is the probability that the system fails due to the components in series? Assume parallel components do not fail. Answer: . 3-3. (2 points) What is the probability that the system fails due to the components in parallel? Assume series components...
For a basic spring-mass-damper system with the following information. Mass = 0.35kg Spring Constant = 10000...
For a basic spring-mass-damper system with the following information. Mass = 0.35kg Spring Constant = 10000 N/m Initial displacement = 10mm Initial velocity = 0 Find the equations of motion both north displacement and velocity with respect to time t for the damping ratios of 0, 0.1 and 1. Please show full working
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx =...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx = f(t). Given the parameters {M = 2kg, B = 67.882 N-s/m, K = 400 N/m}, determine the free response of the system to initial conditions { x0 = -1m, v0 = 40 m/s}. To help verify the correctness of your answer, a plot of x(t) should go through the coordinates {t, x(t)} = {.015, -0.5141} and {t, x(t)} = 0.03, -0.2043}. Numerically simulate the...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx =...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx = f(t). Given the parameters {M = 2kg, B = 67.882 N-s/m, K = 400 N/m}, determine the free response of the system to initial conditions { x0 = -1m, v0 = 40 m/s}. To help verify the correctness of your answer, a plot of x(t) should go through the coordinates {t, x(t)} = {.015, -0.5141} and {t, x(t)} = 0.03, -0.2043}. Numerically simulate the...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx =...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx = f(t). Given the parameters {M = 2kg, B = 67.882 N-s/m, K = 400 N/m}, determine the free response of the system to initial conditions { x0 = -1m, v0 = 40 m/s}. To help verify the correctness of your answer, a plot of x(t) should go through the coordinates {t, x(t)} = {.015, -0.5141} and {t, x(t)} = 0.03, -0.2043}. determine the steady-state...
Derive the equation of motion for the mass-spring damper system of the seismic instrument as shown...
Derive the equation of motion for the mass-spring damper system of the seismic instrument as shown in the Figure. If the mass is 2 kg the spring stiffness 2.35 kN/m. damping coefficient 10 N.sm and 1-40 cm, determine (a) the undamped natural frequency (b) the undamped natural period o Rundup (a) (d) the damped natural froquency (e) the damped natural period
The mass-spring-damper system has a 2 kg block is displaced by an amplitude of 50 mm...
The mass-spring-damper system has a 2 kg block is displaced by an amplitude of 50 mm and released. Ifthc phase angle ofrcsponse is 84.17o, how many cycles (m) will be executed beforc the amplitude is reduced to I mm. What are the undamped natural frequency m« and spring constant k ifthc period ofdamped oscillation rs is 0.3 scc.
Simulate the Spring Mass Damper System shown in Fig. Using MATLAB/Simulink, m being the mass of...
Simulate the Spring Mass Damper System shown in Fig. Using MATLAB/Simulink, m being the mass of Vibrating System in Kg. c Being the coefficient of damping in N-sec/m, K being spring stiffness in N/m. For the values m=15kg C=100 N-sec/m k=200 N/m mx''+cx'+kx=f0sinwt
What is resistors in series and parallel? (Briefly explain) a.) Why do we need to learn...
What is resistors in series and parallel? (Briefly explain) a.) Why do we need to learn this topic? b.) How can we apply or use this knowledge in our daily lives.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT