Question

In: Mechanical Engineering

For a basic spring-mass-damper system with the following information. Mass = 0.35kg Spring Constant = 10000...

For a basic spring-mass-damper system with the following information.

Mass = 0.35kg
Spring Constant = 10000 N/m
Initial displacement = 10mm
Initial velocity = 0

Find the equations of motion both north displacement and velocity with respect to time t for the damping ratios of 0, 0.1 and 1. Please show full working

Solutions

Expert Solution


Related Solutions

The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx =...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx = f(t). Given the parameters {M = 2kg, B = 67.882 N-s/m, K = 400 N/m}, determine the free response of the system to initial conditions { x0 = -1m, v0 = 40 m/s}. To help verify the correctness of your answer, a plot of x(t) should go through the coordinates {t, x(t)} = {.015, -0.5141} and {t, x(t)} = 0.03, -0.2043}. Numerically simulate the...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx =...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx = f(t). Given the parameters {M = 2kg, B = 67.882 N-s/m, K = 400 N/m}, determine the free response of the system to initial conditions { x0 = -1m, v0 = 40 m/s}. To help verify the correctness of your answer, a plot of x(t) should go through the coordinates {t, x(t)} = {.015, -0.5141} and {t, x(t)} = 0.03, -0.2043}. Numerically simulate the...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx =...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx = f(t). Given the parameters {M = 2kg, B = 67.882 N-s/m, K = 400 N/m}, determine the free response of the system to initial conditions { x0 = -1m, v0 = 40 m/s}. To help verify the correctness of your answer, a plot of x(t) should go through the coordinates {t, x(t)} = {.015, -0.5141} and {t, x(t)} = 0.03, -0.2043}. determine the steady-state...
Derive the equation of motion for the mass-spring damper system of the seismic instrument as shown...
Derive the equation of motion for the mass-spring damper system of the seismic instrument as shown in the Figure. If the mass is 2 kg the spring stiffness 2.35 kN/m. damping coefficient 10 N.sm and 1-40 cm, determine (a) the undamped natural frequency (b) the undamped natural period o Rundup (a) (d) the damped natural froquency (e) the damped natural period
Simulate the Spring Mass Damper System shown in Fig. Using MATLAB/Simulink, m being the mass of...
Simulate the Spring Mass Damper System shown in Fig. Using MATLAB/Simulink, m being the mass of Vibrating System in Kg. c Being the coefficient of damping in N-sec/m, K being spring stiffness in N/m. For the values m=15kg C=100 N-sec/m k=200 N/m mx''+cx'+kx=f0sinwt
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant 9 lbin is suddenly set in motion at t=0 by an external force of 180cos(8t) lb, determine the position of the mass at any time. Assume that g=32 fts2. Solve for u in feet.
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant 9 lb/in is suddenly set in motion at t=0 by an external force of 99cos(20t) lb, determine the position of the mass at any time. Assume that g=32 ft/s2. Solve for u in feet.
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant 9 lbin is suddenly set in motion at t=0 by an external force of 33cos(20t) lb, determine the position of the mass at any time. Assume that g=32 fts2. Solve for u in feet. Enclose arguments of functions in parentheses. For example, sin(2x). u(t)=?
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 24 lb and a spring constant 9 lbin is suddenly set in motion at t=0 by an external force of 288cos(4t) lb, determine the position of the mass at any time. Assume that g=32 fts2. Solve for u in feet. Enclose arguments of functions in parentheses. For example, sin(2x).
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant...
If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant 4 lbin is suddenly set in motion at t=0 by an external force of 63cos(12t) lb, determine the position of the mass at any time. Assume that g=32 fts2. Solve for u in feet.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT