Question

In: Statistics and Probability

A quality control engineer at a potato chip company tests the bag filling machine by weighing...

A quality control engineer at a potato chip company tests the bag filling machine by weighing bags of potato chips. Not every bag contains exactly the same weight. But if more than 16% of bags are over-filled then they stop production to fix the machine. They define over-filled to be more than 1 ounce above the weight on the package.

The engineer weighs 201 bags and finds that 66 of them are over-filled. He plans to test the hypotheses H0: p = 0.16 versus Ha: p > 0.16. What is the test statistic?

z =

(Please round your answer to two decimal places if necessary.)

Thanks!

Solutions

Expert Solution

We have for given example,                  
Population proportion value is =0.16              
x=66              
                  
n=201              
              
Estimate for sample proportion =0.3284              
                  
Z test statistic formula for proportion                  


=6.51              
  


Related Solutions

1) A quality control engineer at a potato chip company tests the bag filling machine by...
1) A quality control engineer at a potato chip company tests the bag filling machine by weighing bags of potato chips. Not every bag contains exactly the same weight. But if more than 12% of bags are over-filled then they stop production to fix the machine. They define over-filled to be more than 1 ounce above the weight on the package. The engineer weighs 103 bags and finds that 32 of them are over-filled. He plans to test the hypotheses...
Question 3 A quality control engineer at a potato chip company tests the bag filling machine...
Question 3 A quality control engineer at a potato chip company tests the bag filling machine by weighing bags of potato chips. Not every bag contains exactly the same weight. But if more than 14% of bags are over-filled then they stop production to fix the machine. They define over-filled to be more than 1 ounce above the weight on the package. The engineer weighs 175 bags and finds that 56 of them are over-filled. He plans to test the...
A potato chip company advertises that their family sized bag of potato chips have an average...
A potato chip company advertises that their family sized bag of potato chips have an average weight of 10 oz. I want to know if the bags are overfilled. I randomly sampled 100 bags of chips and find that my sample has a mean weight of 10.1 oz and a standard deviation of 0.2 oz. The sample data was not strongly skewed. 1. Write the appropriate null and alternative hypothesis. 2. Calculate the t score. 3. use the t score...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 409 gram setting. Based on a 21 bag sample where the mean is 417 grams and the standard deviation is 26, is there sufficient evidence at the 0.1 level that the bags are overfilled? Assume the population distribution is approximately normal. Step 1 of 5: State the null and alternative hypotheses. Step 2 of 5: Find the value of the test statistic....
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 410.0 gram setting. Based on a 46 bag sample where the mean is 408.0 grams, is there sufficient evidence at the 0.1 level that the bags are underfilled? Assume the standard deviation is known to be 20.0. Step one: Enter the hypotheses: H0: Ha: Step two: Enter the value of the z test statistic. Round your answer to two decimal places. Step...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 429.0 gram setting. It is believed that the machine is underfilling the bags. A 4040 bag sample had a mean of 425.0 grams. A level of significance of 0.02 will be used. Determine the decision rule. Assume the standard deviation is known to be 11.0. Enter the decision rule.
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 445-gram setting. It is believed that the machine is underfilling the bags. A 26 bag sample had a mean of 438 grams with a variance of 289. Assume the population is normally distributed. A level of significance of 0.010.01 will be used. Find the P-value of the test statistic. You may write the P-value as a range using interval notation, or as...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 444 gram setting. It is believed that the machine is underfilling the bags. A 39 bag sample had a mean of 436 grams. Assume the population standard deviation is known to be 19. Is there sufficient evidence at the 0.01 level that the bags are underfilled?
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 445 gram setting. It is believed that the machine is underfilling the bags. A 34 bag sample had a mean of 443 grams. Assume the population standard deviation is known to be 30. A level of significance of 0.05 will be used. Find the P-value of the test statistic. You may write the P-value as a range using interval notation, or as...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 443443 gram setting. It is believed that the machine is underfilling the bags. A 1515 bag sample had a mean of 434434 grams with a standard deviation of 1717. A level of significance of 0.10.1 will be used. Assume the population distribution is approximately normal. Determine the decision rule for rejecting the null hypothesis. Round your answer to three decimal places. Reject...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT