Question

In: Statistics and Probability

A manufacturer of potato chips would like to know whether its bag filling machine works correctly...

A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 410.0 gram setting. Based on a 46 bag sample where the mean is 408.0 grams, is there sufficient evidence at the 0.1 level that the bags are underfilled? Assume the standard deviation is known to be 20.0.

Step one: Enter the hypotheses:

H0:

Ha:

Step two: Enter the value of the z test statistic. Round your answer to two decimal places.

Step three: Specify if the test is one-tailed or two-tailed.

Step four: Enter the decision rule.

Reject H0 if z < _____

Step five: Enter the conclusion.

a. Reject Null Hypothesis

b. Fail to Reject Null Hypothesis

Solutions

Expert Solution

Solution :

Given that,

Population mean = = 410

Sample mean = = 408

Population standard deviation = = 20

Sample size = n = 46

Level of significance = = 0.01

Step one:

Claim : The bags are underfilled.

The null and alternative hypothesis is,  

Ho: 410

Ha: 410

Step two:

The test statistics,

Z =( - )/ (/n)

= ( 408 - 410 ) / ( 20 / 46 )

= -0.68

Step three:

This is a left (One) tailed test,

Step four:

Critical value of  the significance level is α = 0.05, and the critical value for a two-tailed test is

= -1.28

Reject H0 if z < -1.28

Step five:

Since it is observed that z = -0.68 = -1.28, it is then concluded that the null hypothesis is fail to reject.

b. Fail to Reject Null Hypothesis.


Related Solutions

A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 409 gram setting. Based on a 21 bag sample where the mean is 417 grams and the standard deviation is 26, is there sufficient evidence at the 0.1 level that the bags are overfilled? Assume the population distribution is approximately normal. Step 1 of 5: State the null and alternative hypotheses. Step 2 of 5: Find the value of the test statistic....
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 429.0 gram setting. It is believed that the machine is underfilling the bags. A 4040 bag sample had a mean of 425.0 grams. A level of significance of 0.02 will be used. Determine the decision rule. Assume the standard deviation is known to be 11.0. Enter the decision rule.
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 445-gram setting. It is believed that the machine is underfilling the bags. A 26 bag sample had a mean of 438 grams with a variance of 289. Assume the population is normally distributed. A level of significance of 0.010.01 will be used. Find the P-value of the test statistic. You may write the P-value as a range using interval notation, or as...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 444 gram setting. It is believed that the machine is underfilling the bags. A 39 bag sample had a mean of 436 grams. Assume the population standard deviation is known to be 19. Is there sufficient evidence at the 0.01 level that the bags are underfilled?
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 445 gram setting. It is believed that the machine is underfilling the bags. A 34 bag sample had a mean of 443 grams. Assume the population standard deviation is known to be 30. A level of significance of 0.05 will be used. Find the P-value of the test statistic. You may write the P-value as a range using interval notation, or as...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 443443 gram setting. It is believed that the machine is underfilling the bags. A 1515 bag sample had a mean of 434434 grams with a standard deviation of 1717. A level of significance of 0.10.1 will be used. Assume the population distribution is approximately normal. Determine the decision rule for rejecting the null hypothesis. Round your answer to three decimal places. Reject...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 430 gram setting. It is believed that the machine is underfilling the bags. A 24 bag sample had a mean of 427 grams with a standard deviation of 15. Assume the population is normally distributed. A level of significance of 0.02 will be used. Specify the type of hypothesis test.
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 410.0 gram setting. It is believed that the machine is underfilling the bags. A 35 bag sample had a mean of 404.0 grams. A level of significance of 0.01 will be used. Is there sufficient evidence to support the claim that the bags are underfilled? Assume the standard deviation is known to be 28.0. What is the conclusion?
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 406 gram setting. It is believed that the machine is underfilling the bags. A 42 bag sample had a mean of 397 grams. Assume the population standard deviation is known to be 27. Is there sufficient evidence at the 0.02 level that the bags are underfilled?
A manufacturer of potato chips would like to know whether its bag filling machine works correctly...
A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 428 gram setting. It is believed that the machine is underfilling or overfilling the bags. A 13 bag sample had a mean of 424 grams with a variance of 169. Assume the population is normally distributed. A level of significance of 0.01 will be used. Specify the type of hypothesis test.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT