Question

In: Computer Science

For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B....

For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562?

A. 35CCD001

B. 2F5C10D0

C. 41D8D000

D. 7DCA1111

E. None of the above

Solutions

Expert Solution

What is the hexadecimal representation of 27.101562 in IEEE 754 single-precision floating point standard:

Answer: (C) 41D8D000

Description:

• IEEE 754 single-precision floating point representation:

(1) Sign field:

The sign of mantissa will be 0 if the given number is positive and 1 if the given number is negative.

(2) Exponent field:

For getting the stored exponent field, a bias (i.e. 127 for single point precision) will be added to actual exponent.

(3) Mantissa field:

The mantissa is significant digits that is an actual numeric part in scientific notation or in a floating-point number. Normalized mantissa contains only single 1 on the left side of the decimal point. (e.g. 1.00001000000010100000000)

• Representing 27.101562 to IEEE 754 single-precision floating point:

• Given number is positive. So, sign = 0

27 = 11011

0.101562 = 0.0001101 (rounded)

27.101562 = 11011.0001101

11011.0001101 = 1.10110001101 x 24

• Biased exponent = 127 + 4 = 131 = 10000011

• Mantissa: 10110001101000000000000 (fill remaining bits with 0 to complete 23 bits)

(1.10110001101 x 24 : take the part after decimal point and add the rest 0's to make it of 23 bits)

• Binary: 01000001110110001101000000000000

Hexadecimal: 41D8D000


Related Solutions

Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following:...
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following: a. Zero b. -2.0 (base 10) c. 256. 0078125 (base 10) d. Negative infinity
Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for...
Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for upvote. Please do not answer otherwise.
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B)...
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B) Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.  
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE...
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and...
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and the fraction. Convert -3.875 to an IEEE 754 double-precision floating-point number. Show the sign bit, the exponent, and the fraction Convert the IEEE 754 single-precision floating-point numbers 42E4800016 and 0080000016 to their corresponding decimal numbers.
Convert the following number into 32bit IEEE 754 floating point representation. 0.000101
Convert the following number into 32bit IEEE 754 floating point representation. 0.000101
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a =...
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a = 0100 0000 1101 1000 0000 0000 0000 0000 b = 1011 1110 1110 0000 0000 0000 0000 0000 Perform the following arithmetic and show the results in both normalized binary format and IEEE 754 single-precision format. Show your steps. a)     a + b b)     a × b
Express the following two base 10 numbers in binary using the IEEE 754 single-precision floating point...
Express the following two base 10 numbers in binary using the IEEE 754 single-precision floating point format (i.e., 32 bits). Express your final answer in hexadecimal (e.g., 32’h????????). a) 68.3125 b) -19.675
a newer version of IEEE 754 defines a half precision floating point format that is only...
a newer version of IEEE 754 defines a half precision floating point format that is only 16 bits wide. the left most bit is still the sign bit. the exponent is 5 bits wide and has a bias of 15, and the fraction is 10 bits long. A hidden 1 is assumed similar to single and double precision formats. what is the bit pattern to represent -0.5 using this format?
Determine the IEEE single and double floating point representation of the following numbers: a) -26.25 b)...
Determine the IEEE single and double floating point representation of the following numbers: a) -26.25 b) 15/2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT