Question

In: Computer Science

Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and...

Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and the fraction.

Convert -3.875 to an IEEE 754 double-precision floating-point number. Show the sign bit, the exponent, and the fraction

Convert the IEEE 754 single-precision floating-point numbers 42E4800016 and 0080000016 to their corresponding decimal numbers.

Solutions

Expert Solution

0.875 = 00111111011000000000000000000000 = 0x3f600000

-3.875 = 11000000011110000000000000000000 = 0xc0780000

0x42e48000 = 114.25

0x00800000 =  1.17549435E-38


Related Solutions

Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE...
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.
Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for...
Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for upvote. Please do not answer otherwise.
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a =...
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a = 0100 0000 1101 1000 0000 0000 0000 0000 b = 1011 1110 1110 0000 0000 0000 0000 0000 Perform the following arithmetic and show the results in both normalized binary format and IEEE 754 single-precision format. Show your steps. a)     a + b b)     a × b
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B)...
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B) Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.  
Convert 1.67e14 to the 32-bit IEEE 754 Floating Point Standard, with the following layout: first bit...
Convert 1.67e14 to the 32-bit IEEE 754 Floating Point Standard, with the following layout: first bit is sign bit, next 8 bits is exponent field, and remaining 23 bits is mantissa field; result is to be in hexadecimal and not to be rounded up. answer choices 5717E27B 57172EB7 5717E2B7 C717E2B7 5771E2B7
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in...
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in non-standard form. 0100_0001_1110_0010_1000_0000_0000_0000
Convert the following number into 32bit IEEE 754 floating point representation. 0.000101
Convert the following number into 32bit IEEE 754 floating point representation. 0.000101
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B....
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B. 2F5C10D0 C. 41D8D000 D. 7DCA1111 E. None of the above
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following:...
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following: a. Zero b. -2.0 (base 10) c. 256. 0078125 (base 10) d. Negative infinity
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT