Question

In: Computer Science

Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for...

Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format.
Please show every single detail for upvote.
Please do not answer otherwise.

Solutions

Expert Solution

Hexadecimal     Binary
    0           0000
    1           0001
    2           0010
    3           0011
    4           0100
    5           0101
    6           0110
    7           0111
    8           1000
    9           1001
    A           1010
    B           1011
    C           1100
    D           1101
    E           1110
    F           1111
Use this table to convert from hexadecimal to binary
Converting CD001234 to binary
C => 1100
D => 1101
0 => 0000
0 => 0000
1 => 0001
2 => 0010
3 => 0011
4 => 0100
So, in binary CD001234 is 11001101000000000001001000110100
11001101000000000001001000110100
1 10011010 00000000001001000110100
sign bit is 1(-ve)
exp bits are 10011010
   => 10011010
   => 1x2^7+0x2^6+0x2^5+1x2^4+1x2^3+0x2^2+1x2^1+0x2^0
   => 1x128+0x64+0x32+1x16+1x8+0x4+1x2+0x1
   => 128+0+0+16+8+0+2+0
   => 154
in decimal it is 154
so, exponent/bias is 154-127 = 27
frac bits are 000000000010010001101

IEEE-754 Decimal value is 1.frac * 2^exponent
IEEE-754 Decimal value is 1.000000000010010001101 * 2^27
1.000000000010010001101 in decimal is 1.0005555152893066
   => 1.000000000010010001101
   => 1x2^0+0x2^-1+0x2^-2+0x2^-3+0x2^-4+0x2^-5+0x2^-6+0x2^-7+0x2^-8+0x2^-9+0x2^-10+1x2^-11+0x2^-12+0x2^-13+1x2^-14+0x2^-15+0x2^-16+0x2^-17+1x2^-18+1x2^-19+0x2^-20+1x2^-21
   => 1x1+0x0.5+0x0.25+0x0.125+0x0.0625+0x0.03125+0x0.015625+0x0.0078125+0x0.00390625+0x0.001953125+0x0.0009765625+1x0.00048828125+0x0.000244140625+0x0.0001220703125+1x6.103515625e-05+0x3.0517578125e-05+0x1.52587890625e-05+0x7.62939453125e-06+1x3.814697265625e-06+1x1.9073486328125e-06+0x9.5367431640625e-07+1x4.76837158203125e-07
   => 1+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.00048828125+0.0+0.0+6.103515625e-05+0.0+0.0+0.0+3.814697265625e-06+1.9073486328125e-06+0.0+4.76837158203125e-07
   => 1.0005555152893066
so, 1.0005555152893066 * 2^27 in decimal is 134292288.0
so, 11001101000000000001001000110100 in IEEE-754 single precision format is -134292288.0
Answer: -134292288.0

Related Solutions

Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE...
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and...
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and the fraction. Convert -3.875 to an IEEE 754 double-precision floating-point number. Show the sign bit, the exponent, and the fraction Convert the IEEE 754 single-precision floating-point numbers 42E4800016 and 0080000016 to their corresponding decimal numbers.
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B)...
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B) Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.  
Please convert 2.75 into IEEE-754 format. Provide every single detail for upvote
Please convert 2.75 into IEEE-754 format. Provide every single detail for upvote
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B....
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B. 2F5C10D0 C. 41D8D000 D. 7DCA1111 E. None of the above
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following:...
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following: a. Zero b. -2.0 (base 10) c. 256. 0078125 (base 10) d. Negative infinity
1. Convert 5.5 to hexadecimal notation using IEEE 754 single precision. Please show your work and...
1. Convert 5.5 to hexadecimal notation using IEEE 754 single precision. Please show your work and answer must be in hexadecimal notation. 2. (4 points) Convert -7.875 to hexadecimal notation using IEEE 754 single precision. Please show your work and answer must be in hexadecimal notation.
a newer version of IEEE 754 defines a half precision floating point format that is only...
a newer version of IEEE 754 defines a half precision floating point format that is only 16 bits wide. the left most bit is still the sign bit. the exponent is 5 bits wide and has a bias of 15, and the fraction is 10 bits long. A hidden 1 is assumed similar to single and double precision formats. what is the bit pattern to represent -0.5 using this format?
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a =...
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a = 0100 0000 1101 1000 0000 0000 0000 0000 b = 1011 1110 1110 0000 0000 0000 0000 0000 Perform the following arithmetic and show the results in both normalized binary format and IEEE 754 single-precision format. Show your steps. a)     a + b b)     a × b
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT