Question

In: Computer Science

A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B)...

A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format.

B) Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.  

Solutions

Expert Solution

A)  01001100110111011101000000000000
B)  -4630528.0

Explanation:
-------------
1)
1101.11011101 * 2^23
= 1.10111011101 * 2^26

single precision:
--------------------
sign bit is 0(+ve)
exponent bits are (127+26=153) => 10011001
   Divide 153 successively by 2 until the quotient is 0
      > 153/2 = 76, remainder is 1
      > 76/2 = 38, remainder is 0
      > 38/2 = 19, remainder is 0
      > 19/2 = 9, remainder is 1
      > 9/2 = 4, remainder is 1
      > 4/2 = 2, remainder is 0
      > 2/2 = 1, remainder is 0
      > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 10011001
   So, 153 of decimal is 10011001 in binary
frac/significant bits are 10111011101000000000000

Answer: 0 10011001 10111011101000000000000

2)
1 10010101 00011010101000000000000
sign bit is 1(-ve)
exp bits are 10010101
Converting 10010101 to decimal
   10010101
   => 1x2^7+0x2^6+0x2^5+1x2^4+0x2^3+1x2^2+0x2^1+1x2^0
   => 1x128+0x64+0x32+1x16+0x8+1x4+0x2+1x1
   => 128+0+0+16+0+4+0+1
   => 149
in decimal it is 149
so, exponent/bias is 149-127 = 22
frac bits are 00011010101

IEEE-754 Decimal value is 1.frac * 2^exponent
IEEE-754 Decimal value is 1.00011010101 * 2^22
1.00011010101 in decimal is 1.10400390625
   => 1.00011010101
   => 1x2^0+0x2^-1+0x2^-2+0x2^-3+1x2^-4+1x2^-5+0x2^-6+1x2^-7+0x2^-8+1x2^-9+0x2^-10+1x2^-11
   => 1x1+0x0.5+0x0.25+0x0.125+1x0.0625+1x0.03125+0x0.015625+1x0.0078125+0x0.00390625+1x0.001953125+0x0.0009765625+1x0.00048828125
   => 1+0.0+0.0+0.0+0.0625+0.03125+0.0+0.0078125+0.0+0.001953125+0.0+0.00048828125
   => 1.10400390625
so, 1.10400390625 * 2^22 in decimal is 4630528.0
so, 11001010100011010101000000000000 in IEEE-754 single precision format is -4630528.0
Answer: -4630528.0



Related Solutions

Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE...
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.
Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for...
Convert 0xCD001234 from IEEE-754 hexadecimal to single-precision floating point format. Please show every single detail for upvote. Please do not answer otherwise.
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in...
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in non-standard form. 0100_0001_1110_0010_1000_0000_0000_0000
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and...
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and the fraction. Convert -3.875 to an IEEE 754 double-precision floating-point number. Show the sign bit, the exponent, and the fraction Convert the IEEE 754 single-precision floating-point numbers 42E4800016 and 0080000016 to their corresponding decimal numbers.
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B....
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B. 2F5C10D0 C. 41D8D000 D. 7DCA1111 E. None of the above
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a =...
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a = 0100 0000 1101 1000 0000 0000 0000 0000 b = 1011 1110 1110 0000 0000 0000 0000 0000 Perform the following arithmetic and show the results in both normalized binary format and IEEE 754 single-precision format. Show your steps. a)     a + b b)     a × b
Express the following two base 10 numbers in binary using the IEEE 754 single-precision floating point...
Express the following two base 10 numbers in binary using the IEEE 754 single-precision floating point format (i.e., 32 bits). Express your final answer in hexadecimal (e.g., 32’h????????). a) 68.3125 b) -19.675
a newer version of IEEE 754 defines a half precision floating point format that is only...
a newer version of IEEE 754 defines a half precision floating point format that is only 16 bits wide. the left most bit is still the sign bit. the exponent is 5 bits wide and has a bias of 15, and the fraction is 10 bits long. A hidden 1 is assumed similar to single and double precision formats. what is the bit pattern to represent -0.5 using this format?
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following:...
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following: a. Zero b. -2.0 (base 10) c. 256. 0078125 (base 10) d. Negative infinity
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT