Question

In: Computer Science

Convert the following number into 32bit IEEE 754 floating point representation. 0.000101

Convert the following number into 32bit IEEE 754 floating point representation.

0.000101

Solutions

Expert Solution

32 bit IEEE 754 floating point representation

1 bit Sign (S) 8 bits Exponent (E) 23 bits Mantissa(M)

Representation: number = (-1)S * (1.M) * ​​​​​​2E-127

Givennumber:0.000101

(i)Consideringthegivennumberisindecimal

  • 1) 0.000 101 × 2 = 0 + 0.000 202;
  • 2) 0.000 202 × 2 = 0 + 0.000 404;
  • 3) 0.000 404 × 2 = 0 + 0.000 808;
  • 4) 0.000 808 × 2 = 0 + 0.001 616;
  • 5) 0.001 616 × 2 = 0 + 0.003 232;
  • 6) 0.003 232 × 2 = 0 + 0.006 464;
  • 7) 0.006 464 × 2 = 0 + 0.012 928;
  • 8) 0.012 928 × 2 = 0 + 0.025 856;
  • 9) 0.025 856 × 2 = 0 + 0.051 712;
  • 10) 0.051 712 × 2 = 0 + 0.103 424;
  • 11) 0.103 424 × 2 = 0 + 0.206 848;
  • 12) 0.206 848 × 2 = 0 + 0.413 696;
  • 13) 0.413 696 × 2 = 0 + 0.827 392;
  • 14) 0.827 392 × 2 = 1 + 0.654 784;
  • 15) 0.654 784 × 2 = 1 + 0.309 568;
  • 16) 0.309 568 × 2 = 0 + 0.619 136;
  • 17) 0.619 136 × 2 = 1 + 0.238 272;
  • 18) 0.238 272 × 2 = 0 + 0.476 544;
  • 19) 0.476 544 × 2 = 0 + 0.953 088;
  • 20) 0.953 088 × 2 = 1 + 0.906 176;
  • 21) 0.906 176 × 2 = 1 + 0.812 352;
  • 22) 0.812 352 × 2 = 1 + 0.624 704;
  • 23) 0.624 704 × 2 = 1 + 0.249 408;
  • 24) 0.249 408 × 2 = 0 + 0.498 816;
  • 25) 0.498 816 × 2 = 0 + 0.997 632;
  • 26) 0.997 632 × 2 = 1 + 0.995 264;
  • 27) 0.995 264 × 2 = 1 + 0.990 528;
  • 28) 0.990 528 × 2 = 1 + 0.981 056;
  • 29) 0.981 056 × 2 = 1 + 0.962 112;
  • 30) 0.962 112 × 2 = 1 + 0.924 224;
  • 31) 0.924 224 × 2 = 1 + 0.848 448;
  • 32) 0.848 448 × 2 = 1 + 0.696 896;
  • 33) 0.696 896 × 2 = 1 + 0.393 792;
  • 34) 0.393 792 × 2 = 0 + 0.787 584;
  • 35) 0.787 584 × 2 = 1 + 0.575 168;
  • 36) 0.575 168 × 2 = 1 + 0.150 336;
  • 37) 0.150 336 × 2 = 0 + 0.300 672;

and so on..

So,

0.000101(10) =

0.0000000000000110100111100111111110110(2)

= 1.10100111100111111110110(2) × 2-14

Now let's adjust the expont

(-14 + 127)(10) = 113(10)

  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

So, (113)10 = 01110001(2)

Sign bit will be 0 since given number is positive

Therefore, (0.000101)10 is represented in 32 bit IEEE floating point representation as follows

0 01110001 10100111100111111110110

(ii) Considering the given number is in binary

(0.000101)2 = (1.01000000000000000000000)2 * 2-4

Now let's adjust the expont
(-4+127)10 = (123)10

  • 123 ÷ 2 = 61 + 1;
  • 61 ÷ 2 = 30 + 1;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

(123)10 = (01111011)2

Sign bit will be 0, since given number is positive.

Therefore (0.000101)2 is represented in 32 bit IEEE floating point representation as follows

0

01111011

01000000000000000000000

Related Solutions

Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in...
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in non-standard form. 0100_0001_1110_0010_1000_0000_0000_0000
convert 0x41BA8000 to IEEE-754 floating-point value
convert 0x41BA8000 to IEEE-754 floating-point value
convert 0x41BA8000 to IEEE-754 floating-point value
convert 0x41BA8000 to IEEE-754 floating-point value
convert 0x41BA8000 to IEEE-754 floating-point value
convert 0x41BA8000 to IEEE-754 floating-point value
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following:...
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following: a. Zero b. -2.0 (base 10) c. 256. 0078125 (base 10) d. Negative infinity
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and...
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and the fraction. Convert -3.875 to an IEEE 754 double-precision floating-point number. Show the sign bit, the exponent, and the fraction Convert the IEEE 754 single-precision floating-point numbers 42E4800016 and 0080000016 to their corresponding decimal numbers.
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE...
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.
3. IEEE Floating Point Representation What decimal number does the 32-bit IEEE floating point number 0xC27F0000...
3. IEEE Floating Point Representation What decimal number does the 32-bit IEEE floating point number 0xC27F0000 represent? Fill in the requested information in the blanks below. What is the sign of the number (say positive or negative): What is the exponent in decimal format: What is the significand in binary: What is the value of the stored decimal number in decimal (final answer): Credit will be given for your final answer in the blanks and the work shown below.
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B....
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B. 2F5C10D0 C. 41D8D000 D. 7DCA1111 E. None of the above
The biggest mysteries of the IEEE 754 Floating-Point Representation are “hidden bit” and “Bias. Can someone...
The biggest mysteries of the IEEE 754 Floating-Point Representation are “hidden bit” and “Bias. Can someone explain to me why the "hidden bits" and "bias" are considered to be mysteries for the IEEE 754 floating point representation
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT