Question

In: Advanced Math

Let X = R and A = {disjoint union of the intervals of the form (a,...

Let X = R and A = {disjoint union of the intervals of the form (a, b], (−∞, b] and (a, + ∞)}. Prove that A is an algebra but not a σ-algebra.

Solutions

Expert Solution

Here is the answer.

Here we assume that X and empty set includes in A.

By construction of A it is clear that finite union of elements of A belongs to A.



Related Solutions

Let x be a set and let R be a relation on x such x is...
Let x be a set and let R be a relation on x such x is simultaneously reflexive, symmetric, and antisymmetric. Prove equivalence relation.
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​...
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​ S (x​2,​ y​2)​ ⬄ points (x​1,​ y​1)​ and (x​2,​ y​2)​are 5 units apart.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you ​must​ give a counterexample.
Consider the class C of all intervals of the form (a, b), a, b ∈ R,...
Consider the class C of all intervals of the form (a, b), a, b ∈ R, a < b and ∅. Show that C is closed under finite intersections but not under complementations or unions. Hint: to show closure of finite intersections, it is enough to prove closure for intersections of 2 sets.
Show that any open subset of R (w std. topology) is a countable union of open intervals.
Show that any open subset of R (w std. topology) is a countable union of open intervals.What is the objective of this problem and enough to show ?
Let φ : R −→ R be a continuous function and X a subset of R...
Let φ : R −→ R be a continuous function and X a subset of R with closure X' such that φ(x) = 1 for any x ∈ X. Prove that φ(x) = 1 for all x ∈ X.'  
6. (a) let f : R → R be a function defined by f(x) = x...
6. (a) let f : R → R be a function defined by f(x) = x + 4 if x ≤ 1 ax + b if 1 < x ≤ 3 3x x 8 if x > 3 Find the values of a and b that makes f(x) continuous on R. [10 marks] (b) Find the derivative of f(x) = tann 1 1 ∞x 1 + x . [15 marks] (c) Find f 0 (x) using logarithmic differentiation, where f(x)...
Let A , B , and C be disjoint subsets of the sample space. For each...
Let A , B , and C be disjoint subsets of the sample space. For each one of the following statements, determine whether it is true or false. Note: "False" means "not guaranteed to be true." a) P(A)+P(Ac)+P(B)=P(A∪Ac∪B) b) P(A)+P(B)≤1 c) P(Ac)+P(B)≤1 d) P(A∪B∪C)≥P(A∪B) e) P((A∩B)∪(C∩Ac))≤P(A∪B∪C)P((A∩B)∪(C∩Ac))≤P(A∪B∪C) f) P(A∪B∪C)=P(A∩Cc)+P(C)+P(B∩Ac∩Cc) ) Please explain how you got the answer.
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit...
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit in R[x] iff f(x)=a is of degree 0 and is a unit in R.
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring...
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring of the functions from X to R. Show directly the associativity of the multiplication of F(X, R). Assume that R is unital and commutative. show that F(X, R) is also unital and commutative.
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is...
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is a vector space over R. A polynomial f(x, y) is called degree d homogenous polynomial if the combined degree in x and y of each term is d. Let Vd be the set of degree d homogenous polynomials from R[x, y]. Is Vd a subspace of R[x, y]? Prove your answer.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT