Question

In: Math

Consider the class C of all intervals of the form (a, b), a, b ∈ R,...

Consider the class C of all intervals of the form (a, b), a, b ∈ R, a < b and ∅. Show that C is closed under finite intersections but not under complementations or unions. Hint: to show closure of finite intersections, it is enough to prove closure for intersections of 2 sets.

Solutions

Expert Solution


Related Solutions

Let X = R and A = {disjoint union of the intervals of the form (a,...
Let X = R and A = {disjoint union of the intervals of the form (a, b], (−∞, b] and (a, + ∞)}. Prove that A is an algebra but not a σ-algebra.
Consider a class with 3 sections denoted as A, B, C. Let the number of students...
Consider a class with 3 sections denoted as A, B, C. Let the number of students in section A be 10, in section B be 20, and in section C be 15. Let the score of uniformly chosen student be denoted by random variable X. The student’s section be denoted by the random variable Y where Y = 1 if the student is from section A, Y = 2 if the student is from section B and Y = 3...
V=[(a b), a,b E R+] with (a1 b1)+(a2 b2)=(a1a2 b1b2)and for c E R, c(a b)=(a^c...
V=[(a b), a,b E R+] with (a1 b1)+(a2 b2)=(a1a2 b1b2)and for c E R, c(a b)=(a^c b^c) is a vector space over R. Define T:R^2 to V by T[a b]= (e^a e^b). prove T is a linear transformation from R2 to V.
Consider the Potential V(r) =Vo (c/r) exp (-r/c) (where c is a constant) and a deutron...
Consider the Potential V(r) =Vo (c/r) exp (-r/c) (where c is a constant) and a deutron of reduced mass m moving in this potential . (a) Using a trial wave function R(r) = exp (- d *r / c) (d is constant ) find the ground state energy if Vo= 1.35 (b) If one bound state energy is -2.2 find Vo
1. Consider an arithmetic expression of the form a#b=c. Check whether it is possible to replace...
1. Consider an arithmetic expression of the form a#b=c. Check whether it is possible to replace with one of the four signs: +, -, * or / to obtain a correct expression. Test Sample a b c Expected Output 1 2 3 5 True 2 8 2 4 True 3 8 3 2 False 4 6 3 3 True 5 5 2 0 False 6 10 2 2 False Make a MATLAB program
Consider the relation R= {A, B, C, D, E, F, G, H} and the set of...
Consider the relation R= {A, B, C, D, E, F, G, H} and the set of functional dependencies: FD= {{B}—> {A}, {G}—> {D, H}, {C, H}—> {E}, {B, D}—> {F}, {D}—>{C}, {C}—> {G}} 1) Draw FD using the diagrammatic notation. 2) What are all candidate keys for R? 3) If delete {C}—>{G} and change {C, H}—> {E} to {C, H}—> {E, G}, what are all candidate keys for R
Let R be the relation on Z+× Z+ such that (a, b) R (c, d) if...
Let R be the relation on Z+× Z+ such that (a, b) R (c, d) if and only if ad=bc. (a) Show that R is an equivalence relation. (b) What is the equivalence class of (1,2)? List out at least five elements of the equivalence class. (c) Give an interpretation of the equivalence classes for R. [Here, an interpretation is a description of the equivalence classes that is more meaningful than a mere repetition of the definition of R. Hint:...
MIPS a) Consider the C statement: a = (b + d) + (b - c) +...
MIPS a) Consider the C statement: a = (b + d) + (b - c) + (c + d) Which of the following assembly instructions can be used to replicate all or part of this statement in MIPS, without changing or reducing the equation. Assume variables a, b, c, and d are assigned to registers $s0, $s1, $s2 and $s3 respectively. 1. sub $t0, $s2, $s3 2. sub $t0, $s0, $s3 3. sub $t1, $s1, $s2 4. sub $t2, $s1,...
Show that the set of all real numbers of the form a+b sqrt(2)+c sqrt(3)+d sqrt(6),where a,b,c,d...
Show that the set of all real numbers of the form a+b sqrt(2)+c sqrt(3)+d sqrt(6),where a,b,c,d ∈Q, forms a subfield of R
Consider A, B and C, all nxn matrices. Show that: 1) det(A)=det(A^T) 2) if C was...
Consider A, B and C, all nxn matrices. Show that: 1) det(A)=det(A^T) 2) if C was obtained from A by changing the i-th row (column) with the j-th row (column). Show that det(C)=-det(A) 3) det(AB)=det(A)det(B) 4) Let C be a matrix obtained from A by multiplying a row by c ∈ F. Show that det(B)=c · det(A)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT