Question

In: Advanced Math

Let φ : R −→ R be a continuous function and X a subset of R...

Let φ : R −→ R be a continuous function and X a subset of R with closure X' such that φ(x) = 1 for any x ∈ X. Prove that φ(x) = 1 for all x ∈ X.'  

Solutions

Expert Solution

Let    be a continuous function

and with closure   such that

.

Prove that :  

Solution :

   with closure

Therefore every point of is a point of closure of   .

So by definition of point of closure

if , then there exists a sequence of points in such that   .

we have to prove that .

So we let   be any arbitrary element of ,

Now we will prove that  

Because   is closure of   , therefore there exists a sequence of points in such that   .

So and   


Also   is  a continuous function .

So in particular is continuous at   .

Therefore by definition of continuity at a point .

if then   

Now , therefore   ............. ( because )

Hence   is a constant sequence and it converges to   .

Also .

But a convergent sequence converges to a unique limit .

Therefore .

So we have proved that   for any arbitrary   .

Therefore  

for every   .

Therefore we proved


Related Solutions

Given a function φ(z) with z = x+iy let    U(x, y) = ½ [φ(x+iy) +...
Given a function φ(z) with z = x+iy let    U(x, y) = ½ [φ(x+iy) + φ(x-iy)] and V(x, y) = i/2 [φ(x+iy) –φ(x-iy)] A) For φ(z) = z2 find U and V and their induced vector fields E =▼U and F =▼V also show that ▼2U = ▼2V = 0 B) Repeat for f(z) = z3 C) For f(z) = ln z we get U(x, y) = ½ ln (x2+y2) and V(x, y) = arctan (y/x) Find ▼U (electrostatic...
Let f : R → R be a function. (a) Prove that f is continuous on...
Let f : R → R be a function. (a) Prove that f is continuous on R if and only if, for every open set U ⊆ R, the preimage f −1 (U) = {x ∈ R : f(x) ∈ U} is open. (b) Use part (a) to prove that if f is continuous on R, its zero set Z(f) = {x ∈ R : f(x) = 0} is closed.
Let X be a subset of R^n. Prove that the following are equivalent: 1) X is...
Let X be a subset of R^n. Prove that the following are equivalent: 1) X is open in R^n with the Euclidean metric d(x,y) = sqrt((x1 - y1)^2+(x2 - y2)^2+...+(xn - yn)^2) 2) X is open in R^n with the taxicab metric d(x,y)= |x1 - y1|+|x2 - y2|+...+|xn - yn| 3) X is open in R^n with the square metric d(x,y)= max{|x1 - y1|,|x2 - y2|,...,|xn -y n|} (This can be proved by showing the 1 implies 2 implies 3)...
a) Let S ⊂ R, assuming that f : S → R is a continuous function,...
a) Let S ⊂ R, assuming that f : S → R is a continuous function, if the image set {f(x); x ∈ S} is unbounded prove that S is unbounded. b) Let f : [0, 100] → R be a continuous function such that f(0) = f(2), f(98) = f(100) and the function g(x) := f(x+ 1)−f(x) is equal to zero in at most two points of the interval [0, 100]. Prove that (f(50) − f(49))(f(25) − f(24)) >...
1. Let A be an inductive subset of R. Prove that {1} ∪ {x + 1...
1. Let A be an inductive subset of R. Prove that {1} ∪ {x + 1 | x ∈ A} is inductive. 2. (a) Let n ∈ N(Natural number) and suppose that k 2 < n < (k + 1)2 for some k ∈ N. Prove that n does not have a square root in N. (b) Let c ∈ R \ {0}. Prove that if c has a square root in Z, then c has a square root in...
a) State the definition that a function f(x) is continuous at x = a. b) Let...
a) State the definition that a function f(x) is continuous at x = a. b) Let f(x) = ax^2 + b if 0 < x ≤ 2 18/x+1 if x > 2 If f(1) = 3, determine the values of a and b for which f(x) is continuous for all x > 0.
6. (a) let f : R → R be a function defined by f(x) = x...
6. (a) let f : R → R be a function defined by f(x) = x + 4 if x ≤ 1 ax + b if 1 < x ≤ 3 3x x 8 if x > 3 Find the values of a and b that makes f(x) continuous on R. [10 marks] (b) Find the derivative of f(x) = tann 1 1 ∞x 1 + x . [15 marks] (c) Find f 0 (x) using logarithmic differentiation, where f(x)...
. Let φ : R → S be a ring homomorphism of R onto S. Prove...
. Let φ : R → S be a ring homomorphism of R onto S. Prove the following: J ⊂ S is an ideal of S if and only if φ ^−1 (J) is an ideal of R.
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e −x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
Let A ⊆ R, let f : A → R be a function, and let c...
Let A ⊆ R, let f : A → R be a function, and let c be a limit point of A. Suppose that a student copied down the following definition of the limit of f at c: “we say that limx→c f(x) = L provided that, for all ε > 0, there exists a δ ≥ 0 such that if 0 < |x − c| < δ and x ∈ A, then |f(x) − L| < ε”. What was...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT