Question

In: Math

6. (a) let f : R → R be a function defined by f(x) = x...

6. (a) let f : R → R be a function defined by
f(x) =



x + 4 if x ≤ 1
ax + b if 1 < x ≤ 3
3x x 8 if x > 3
Find the values of a and b that makes f(x) continuous on R. [10 marks]
(b) Find the derivative of f(x) = tann 1
1 ∞x
1 + x

. [15 marks]
(c) Find f
0
(x) using logarithmic differentiation, where f(x) = e
e 3x

2x x 5
(6 65x)
4
. [15 marks]
(d) Evaluate the integral Z
(x
3 + 1)1/3x
5
dx.

Solutions

Expert Solution



Related Solutions

Let f be the periodic function defined by f(x) = 1 + x|x|, −1 < x...
Let f be the periodic function defined by f(x) = 1 + x|x|, −1 < x < 1, and f(x) = f(x + 2). Find the Fourier series of f.
Let A ⊆ R, let f : A → R be a function, and let c...
Let A ⊆ R, let f : A → R be a function, and let c be a limit point of A. Suppose that a student copied down the following definition of the limit of f at c: “we say that limx→c f(x) = L provided that, for all ε > 0, there exists a δ ≥ 0 such that if 0 < |x − c| < δ and x ∈ A, then |f(x) − L| < ε”. What was...
Let f : R → R be a function. (a) Prove that f is continuous on...
Let f : R → R be a function. (a) Prove that f is continuous on R if and only if, for every open set U ⊆ R, the preimage f −1 (U) = {x ∈ R : f(x) ∈ U} is open. (b) Use part (a) to prove that if f is continuous on R, its zero set Z(f) = {x ∈ R : f(x) = 0} is closed.
Let f : Rn → R be a differentiable function. Suppose that a point x∗ is...
Let f : Rn → R be a differentiable function. Suppose that a point x∗ is a local minimum of f along every line passes through x∗; that is, the function g(α) = f(x^∗ + αd) is minimized at α = 0 for all d ∈ R^n. (i) Show that ∇f(x∗) = 0. (ii) Show by example that x^∗ neen not be a local minimum of f. Hint: Consider the function of two variables f(y, z) = (z − py^2)(z...
Let T : P3(R) → P4(R) be defined by T(f(x)) = 5f′(x)-∫ f(t)dt (integral from 0...
Let T : P3(R) → P4(R) be defined by T(f(x)) = 5f′(x)-∫ f(t)dt (integral from 0 to x) 1. Show that T is a linear transformation. 2.Find dim (P3(R)) and dim (P4(R)). 3.Find rank(T). Find nullity(T) 4. Is T one-to-one? Is T onto? Justify your answers.
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​...
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​ S (x​2,​ y​2)​ ⬄ points (x​1,​ y​1)​ and (x​2,​ y​2)​are 5 units apart.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you ​must​ give a counterexample.
5. (a) Let f : R \ {−1} → R, f(x) = x+1. Show that f...
5. (a) Let f : R \ {−1} → R, f(x) = x+1. Show that f is injective, but not surjective. (b) Suppose g : R\{−1} → R\{a} is a function such that g(x) = x−1, where a ∈ R. Determine x+1 a, show that g is bijective and determine its inverse function.
f: R[x] to R is the map defined as f(p(x))=p(2) for any polynomial p(x) in R[x]....
f: R[x] to R is the map defined as f(p(x))=p(2) for any polynomial p(x) in R[x]. show that f is 1) a homomorphism 2) Ker(f)=(x-2)R[x] 3) prove that R[x]/Ker(f) is an isomorphism with R. (R in this case is the Reals so R[x]=a0+a1x+a1x^2...anx^n)
A probability density function on R is a function f :R -> R satisfying (i) f(x)≥0...
A probability density function on R is a function f :R -> R satisfying (i) f(x)≥0 or all x e R and (ii) \int_(-\infty )^(\infty ) f(x)dx = 1. For which value(s) of k e R is the function f(x)= e^(-x^(2))\root(3)(k^(5)) a probability density function? Explain.
2 Let F be a field and let R = F[x, y] be the ring of...
2 Let F be a field and let R = F[x, y] be the ring of polynomials in two variables with coefficients in F. (a) Prove that ev(0,0) : F[x, y] → F p(x, y) → p(0, 0) is a surjective ring homomorphism. (b) Prove that ker ev(0,0) is equal to the ideal (x, y) = {xr(x, y) + ys(x, y) | r,s ∈ F[x, y]} (c) Use the first isomorphism theorem to prove that (x, y) ⊆ F[x, y]...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT