In: Statistics and Probability
Find a value of the standard normal random variable z , call it z 0, such that the following probabilities are satisfied.
a. P(z less than or equals z 0) equals 0.3027
b. P(minus z 0less than or equals z less than z 0) equals 0.1518
c. P(z less than or equals z 0) equals0.7659
d. P(z 0 less than or equals z less than or equals 0) equals 0.2706
e. P( minus z 0 less than or equals z less than z 0) equals 0.8146
f. P(minus1less than z less than z 0) equals 0.5757
Solution:
Given that,
a ) P ( -z z0 ) = 0.3027
Using standard normal table
z0 = -0.52
b) P(-z0 Z < z0) = 0.1518
P(Z z) - P(Z z) = 0.1518
2P(Z z0) - 1 = 0.1518
2P(Z z0) = 1 + 0.1518
2P(Z -z0) = 1.1518
P(Z z0) = 1.1518 / 2 = 0.5759
P(Z -z0) = 0.5759
Using standard normal table
z0 = 0.19
z0 = - 0.19
c ) P ( -z z0 ) = 0.7659
Using standard normal table
z0 = 0.73
d ) P ( -z z0 ) = 0.2706
Using standard normal table
z0 = -0.61
e) P(-z0 Z < z0) = 0.8146
P(Z z) - P(Z z) = 0.8146
2P(Z z0) - 1 = 0.8146
2P(Z z0) = 1 + 0.8146
2P(Z -z0) = 1. 8146
P(Z z0) = 1.8146 / 2 = 0.5759
P(Z -z0) = 0.9073
Using standard normal table
z0 = 1.32
z0 = - 1.32
f ) P ( -1 Z z0 ) = 0.5757
P ( Z z0 ) - P ( Z -1 ) = 0.5757
P ( Z z0 ) = 0.5757 - 0.1587
P ( Z z0 ) = 0.4170
Using standard normal table
z0 = - 0.21