Question

In: Chemistry

1) The reversible chemical reaction A(aq)+B(aq)⇌C(aq)+D(aq) has the following equilibrium constant: K=[C][D][A][B]=5.2 a) Initially, only A...

1) The reversible chemical reaction

A(aq)+B(aq)⇌C(aq)+D(aq)

has the following equilibrium constant:

K=[C][D][A][B]=5.2

a) Initially, only A and B are present, each at 2.00 mol L−1. What is the final concentration of A once equilibrium is reached?

b) What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 mol L−1 and [B] = 2.00 mol L−1 ?

Solutions

Expert Solution

a)

A   + B    ßà C   +   D

2      2           0      0

2-x     2-x         x       x

Kc = x^2 / (2-x)^2

5.2 = (x/(2-x))^2

x/(2-x) = sqrt (5.2)

x/(2-x) = 2.28

x = 4.56 – 2.28*x

3.28*x = 4.56

x = 1.39 M

[A] = 2-x = 2 – 1.39 = 0.61 M

Answer: 0.61 M

b)

A   + B    ßà C   +   D

1      2           0      0

1-x     2-x         x       x

Kc = x^2 / (2-x)(1-x)

5.2 = x^2 / (2-3x+x^2)

5.2*x^2 -15.6*x +10.4 = x^2

4.2*x^2 – 15.6*x + 10.4 = 0

solving above quadratic equation we get,

x = 2.84 and x=0.87

x can’t be 2.84 as it will make concentration of A and B negative

so,

x = 0.87 M

[D] = 0.87 M

Answer: 0.87 M


Related Solutions

The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=3.4 Initially, only A and B...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=3.4 Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M ?
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=5.9 Initially, only A and B...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=5.9 Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? Part B What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M ?
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D]/[A][B]=5.4 PART A: Initially, only A...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D]/[A][B]=5.4 PART A: Initially, only A and B are present, each at 2.00 M . What is the final concentration of A once equilibrium is reached? Express your answer to two significant figures and include the appropriate units. PART B: What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M ? Express your answer to two significant...
The reversible chemical reaction A+B?C+D has the following equilibrium constant: Kc=[C][D][A][B]=3.4 Part A Initially, only A...
The reversible chemical reaction A+B?C+D has the following equilibrium constant: Kc=[C][D][A][B]=3.4 Part A Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? Part B What is the final concentration of D at equilibrium if the initial concentrations are[A] = 1.00M and [B] = 2.00M ?
he reversible chemical reaction A(aq)+B(aq)⇌C(aq)+D(aq) has the following equilibrium constant: K=[C][D][A][B]=2.4 What is the final concentration...
he reversible chemical reaction A(aq)+B(aq)⇌C(aq)+D(aq) has the following equilibrium constant: K=[C][D][A][B]=2.4 What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 mol⋅L−1 and [B] = 2.00 mol⋅L−1 ?
Using the Equilibrium Constant The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D]/[A][B]=4.6 Part...
Using the Equilibrium Constant The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D]/[A][B]=4.6 Part A Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? Express your answer to two significant figures and include the appropriate units. Part B What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M ? Express your answer...
An elementary reaction A to B is reversible and has an equilibrium constant of 10, and...
An elementary reaction A to B is reversible and has an equilibrium constant of 10, and a forward rate constant of 1.0 d-1. a) Plot the concentrations of A and B as a function of time in a batch reactor that initially contains 10-3 M each of A and B. Show the data from the initial condition until the concentrations are both changing at an instantaneous rate of less than 10-5 M per day. b) Repeat part (a) if the...
What is meant by chemical equilibrium? Given the following reaction: A + B <--> C +D...
What is meant by chemical equilibrium? Given the following reaction: A + B <--> C +D (reversible reaction), how would you drive the following reaction away from equilibrium to produce more of substances A and B?
Calculate the equilibrium constant K of the reaction Sn(s)|Sn2+(aq)||Ag+(aq)|Ag(s) at 25 °C.
Calculate the equilibrium constant K of the reaction Sn(s)|Sn2+(aq)||Ag+(aq)|Ag(s) at 25 °C.
(a) For the reaction 2 A(aq) ⇋ 2 B(g) + C(g), the equilibrium constant is 4.59...
(a) For the reaction 2 A(aq) ⇋ 2 B(g) + C(g), the equilibrium constant is 4.59 at 25.0oC. If the concentrations of B(aq) and C(aq) are each 0.311 M, what concentration of A(aq) is required to have a ΔG value of -6.66 kJ/mol? The temperature is 25.0oC. (b) We have a buffer solution that was produced by adding 11.9 g of NaOH to 2.000 L of a 0.666 M solution of HA(aq). The pH of the buffer solution is 3.25...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT