Question

In: Chemistry

At 500 °C, hydrogen iodide decomposes according to 2HI(g)↽−−⇀H2(g)+I2(g)2HI(g)↽−−⇀H2(g)+I2(g) For HI(g)HI(g) heated to 500 °C in...

At 500 °C, hydrogen iodide decomposes according to

2HI(g)↽−−⇀H2(g)+I2(g)2HI(g)↽−−⇀H2(g)+I2(g)

For HI(g)HI(g) heated to 500 °C in a 1.00 L reaction vessel, chemical analysis determined these concentrations at equilibrium: [H2]=0.400 M[H2]=0.400 M , [I2]=0.400 M[I2]=0.400 M , and [HI]=3.38 M[HI]=3.38 M . If an additional 1.00 mol of HI(g)HI(g) is introduced into the reaction vessel, what are the equilibrium concentrations after the new equilibrium has been reached?

[HI]=

[H2]=

[I2]=

Please help and show work!

Solutions

Expert Solution


Related Solutions

Rate constants for the gas-phase decomposition of hydrogen iodide, 2 HI(g) → H2 (g) + I2...
Rate constants for the gas-phase decomposition of hydrogen iodide, 2 HI(g) → H2 (g) + I2 (g), are listed in the following table: Temperature (Celcius) k(M-1s-1) 283 3.52*10-7 356 3.02*10-5 393 2.19*10-4 427 1.16*10-3 508 3.95*10-2 (a) Find the activation energy (in kJ/mol) using all five data points. (b) Calculate Ea from the rate constants at 283 °C and 508 °C. (c) Given the rate constant at 283 °C and the value of Ea obtained in part (b), what is...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430°C. Calculate the equilibrium concentrations of H2, I2, and HI at 430°C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.547 M. [H2]= [I2]= [HI]=
A. HI decomposes to H2 and I2 according to a 2nd order rate law. The rate...
A. HI decomposes to H2 and I2 according to a 2nd order rate law. The rate constant of for the reaction is 9.7x10-6 M-1s -1. The initial concentration of HI is 0.100 M. How long will it take for the concentration of HI to reach 0.085 M. Answer in days. t = ____________________ days B. The rate constant for the decomposition of sucrose at 25°C is 0.208 s-1. What is the rate constant for the reaction at 100°C? The activation...
For the following reaction: 2HI (g) ----> H2(g) + I2(g), the rate law is rate= k[HI]^2....
For the following reaction: 2HI (g) ----> H2(g) + I2(g), the rate law is rate= k[HI]^2. You are starting with 1.0M HI. How long will the first half-life reaction be? (The professor adds: Note that since you don't know the value for the rate constant k, just leave it in your answers.)
For the following reaction: H2(g) + I2(g)<--->2HI(g)     ; Kc=49.5 The beginning concentrations are: H2: 0.10M, I2:...
For the following reaction: H2(g) + I2(g)<--->2HI(g)     ; Kc=49.5 The beginning concentrations are: H2: 0.10M, I2: 0.050M, and HI:0 Assume this reaction is not at equilibrium. When it does reach equilibrium, what will the concentrations be?
2HI --> H2 + I2 a mixture of 0.500 M HI, 0.100 M H2, and 0.100...
2HI --> H2 + I2 a mixture of 0.500 M HI, 0.100 M H2, and 0.100 M I2 is placed in a reaction vessel and allowed to come to equilibrium at a temperature of 745 K. The value of the equilibrium constant at that temperature is 0.0200. What is the concentration of HI at equilibrium?
The following reaction was performed in a sealed vessel at 724*C : H2(g)+I2(g)?2HI(g) Initially, only H2...
The following reaction was performed in a sealed vessel at 724*C : H2(g)+I2(g)?2HI(g) Initially, only H2 and I2 were present at concentrations of [H2]=3.85M and [I2]=2.85M. The equilibrium concentration of I2 is 0.0800M . What is the equilibrium constant, Kc, for the reaction at this temperature? Express answer numerically
2H2S (g) = 2H2 (g) + S2 (g) When heated hydrogen sulfide gas decomposes according to...
2H2S (g) = 2H2 (g) + S2 (g) When heated hydrogen sulfide gas decomposes according to the equation above. A 3.40g smple of H2S(g) is introduced into an evacuated rigid 1.25 L container. The sealed container is heated to 483 K, and 3.72 x10-2 mol of S2 (g) is present at equilibrium. a) Write the expression for the equilibrium constant, Kc for the decomposition reaction represented above. b) Calculate the equilibrium concentration in M of H2 (g) and H2S (g)...
The reaction 2HI --> H2 + I2 is second order in [HI] and second order overall....
The reaction 2HI --> H2 + I2 is second order in [HI] and second order overall. The rate constant of the reaction at 700 degrees celsius is 1.57 x 10-5 M-1 s-1. Suppose you have a sample in which the concentration of [HI] is 0.75 M. What was the concentration of HI 8 hours earlier?
The following reaction was performed in a sealed vessel at 738 ∘C : H2(g)+I2(g)⇌2HI(g) Initially, only...
The following reaction was performed in a sealed vessel at 738 ∘C : H2(g)+I2(g)⇌2HI(g) Initially, only H2 and I2 were present at concentrations of [H2]=3.40M and [I2]=2.25M. The equilibrium concentration of I2 is 0.0100 M . What is the equilibrium constant, Kc, for the reaction at this temperature?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT