In: Chemistry
For N2 gas at 1 atm and 15ºC, calculate: a)the number of collisions each molecule encounter in 1s b)the total number of collisions in a volume of 1 m3 in 1 s c) the average distance the N2 molecules travel between collisions.
a)
No. coliisions per molecule per second:
Collision frequency = RMS / MFP
where
RMS = Root-mean-square velocity
MFP = mean free path
claculate each:
RMS
RMS =sqrt(3*RT/MW)
where, R = ideal gas constant, T = temperature, MW moalr mas in kg/mol
MW of N2 = 28.08 g/mol --> change to kg --> 28.08 *10^-3 kg/mol
T = 15°C = 15+273.15 K = 288.15 K
RMS= sqrt(3*8.314*288.15 / (28.08 *10^-3))
RMS = 505.913 m/s
Now,
MFP
Assume molecules have diameter "D"; when, for a circle, then, the Area (σ)
σ = d = 3.75*10^-10 m
MFP = RT/((sqrt(2) * PI* σ^2 *Na*P))
where,
R = 8.314 J/molK, ideal gas constant,
T = Abs. Temperature = 15°C = 15+273.15 K = 288.15 K
σ = area of collision
Na = avogrados' number = 6.022*10^23
P = pressure abs = 1 atm = 101325 Pa
Now;
get
d = 370 pm
σ = 2*d = 2*370 pm = 740 pm = 740*10^-12 m
substitute all data:
MFP = RT/((sqrt(2) *PI * σ^2 *Na*P))
MFP = (8.314)(288.15 ) / (sqrt(2) * 3.1416* (740*10^-12)^2 * (6.022*10^23)(101325))
MFP = 2395.6791 /148452217468
MFP = 1.613 *10^-8 m
Now,
substitute in Collisions per frequency
Collision frequency = RMS / MFP
Collision frequency = 505.913 m/s / 1.613 *10^-8 m
Collision = (505.913 )/(1.613 *10^-8) = 31364724116.6 1/s = 3.13*10^10 Hz
b)
total no. collision in V = 1 m3 in 1 s
Total Number of Collision per unit volume per second...
Total Collision = 1/2*n' * Collisions per second;
where n' = N/V = molecules per volume
n' = N/V = (Na*P)/(R*T) = (6.022*10^23)(101325)/(8.314*288)
n' = 2.5483*10^25
Total Collision = 1/2*n' * Collisions per second;
Total Collision = 1/2*(2.5483*10^25) * (3.13*10^10) = 3.988*10^35 per m3 per second
c)
Averge distance between N2 molecules
This is by definition, the mean free path between N2
MFP = 1.613 *10^-8 m
MFP = 1.613 *10^-8 m * 10^9 nm / m = 16.13 nm