Question

In: Chemistry

A. HI decomposes to H2 and I2 according to a 2nd order rate law. The rate...

A. HI decomposes to H2 and I2 according to a 2nd order rate law. The rate constant of for the reaction is 9.7x10-6 M-1s -1. The initial concentration of HI is 0.100 M. How long will it take for the concentration of HI to reach 0.085 M. Answer in days. t = ____________________ days B. The rate constant for the decomposition of sucrose at 25°C is 0.208 s-1. What is the rate constant for the reaction at 100°C? The activation energy for the reaction is 50.6kJ/mol. k100°C = ________________

Solutions

Expert Solution


Related Solutions

At 500 °C, hydrogen iodide decomposes according to 2HI(g)↽−−⇀H2(g)+I2(g)2HI(g)↽−−⇀H2(g)+I2(g) For HI(g)HI(g) heated to 500 °C in...
At 500 °C, hydrogen iodide decomposes according to 2HI(g)↽−−⇀H2(g)+I2(g)2HI(g)↽−−⇀H2(g)+I2(g) For HI(g)HI(g) heated to 500 °C in a 1.00 L reaction vessel, chemical analysis determined these concentrations at equilibrium: [H2]=0.400 M[H2]=0.400 M , [I2]=0.400 M[I2]=0.400 M , and [HI]=3.38 M[HI]=3.38 M . If an additional 1.00 mol of HI(g)HI(g) is introduced into the reaction vessel, what are the equilibrium concentrations after the new equilibrium has been reached? [HI]= [H2]= [I2]= Please help and show work!
For the following reaction: 2HI (g) ----> H2(g) + I2(g), the rate law is rate= k[HI]^2....
For the following reaction: 2HI (g) ----> H2(g) + I2(g), the rate law is rate= k[HI]^2. You are starting with 1.0M HI. How long will the first half-life reaction be? (The professor adds: Note that since you don't know the value for the rate constant k, just leave it in your answers.)
The reaction 2HI --> H2 + I2 is second order in [HI] and second order overall....
The reaction 2HI --> H2 + I2 is second order in [HI] and second order overall. The rate constant of the reaction at 700 degrees celsius is 1.57 x 10-5 M-1 s-1. Suppose you have a sample in which the concentration of [HI] is 0.75 M. What was the concentration of HI 8 hours earlier?
1.       Consider the reaction for the production of HI from H2 and I2.                H2 (g)+...
1.       Consider the reaction for the production of HI from H2 and I2.                H2 (g)+ I2(g) D 2HI(g)      a)       What is the initial concentration of HI? b)      What is the equilibrium concentration of HI? c)       How is the change in concentration of HI calculated? Explain: d)      How are the changes in concentration for H2 and I2 calculated? Explain e)       How are the equilibrium concentrations of H2 and I2 calculated? Explain
2HI --> H2 + I2 a mixture of 0.500 M HI, 0.100 M H2, and 0.100...
2HI --> H2 + I2 a mixture of 0.500 M HI, 0.100 M H2, and 0.100 M I2 is placed in a reaction vessel and allowed to come to equilibrium at a temperature of 745 K. The value of the equilibrium constant at that temperature is 0.0200. What is the concentration of HI at equilibrium?
Rate constants for the gas-phase decomposition of hydrogen iodide, 2 HI(g) → H2 (g) + I2...
Rate constants for the gas-phase decomposition of hydrogen iodide, 2 HI(g) → H2 (g) + I2 (g), are listed in the following table: Temperature (Celcius) k(M-1s-1) 283 3.52*10-7 356 3.02*10-5 393 2.19*10-4 427 1.16*10-3 508 3.95*10-2 (a) Find the activation energy (in kJ/mol) using all five data points. (b) Calculate Ea from the rate constants at 283 °C and 508 °C. (c) Given the rate constant at 283 °C and the value of Ea obtained in part (b), what is...
The gas phase reaction H2 + I2 --> 2HI is second order. Its rate constant at...
The gas phase reaction H2 + I2 --> 2HI is second order. Its rate constant at 400 C is 0.0243 dm3/mol s. Calculate delta H, delta S, delta G and the pre-exponential at this temperature. Assume that delta H is constant over this temperature range.
Consider the equilibrium reaction. H2(g) + I2(g) ⇌ 2 HI(g) In this case, 1.000 M H2...
Consider the equilibrium reaction. H2(g) + I2(g) ⇌ 2 HI(g) In this case, 1.000 M H2 reacts with 2.000 M of I2 at a temperature of 441°C. The value of Kc = 67. Determine the equilibrium concentrations of H2, I2, and HI.
Kc for the following reaction is 0.35. H2 (g) + I2 (g) 2 HI (g). If...
Kc for the following reaction is 0.35. H2 (g) + I2 (g) 2 HI (g). If 1.0 mol of I2 and 1.0 mol of H2 are placed in a 1.0 L vessel, the equilibrium concentration of HI is : The answer is 0.46 M, please explain how this value was reached. Thanks!
An equilibrium mixture of H2, I2, and HI at 458 ∘C contains 0.112 molH2, 0.112 molI2,...
An equilibrium mixture of H2, I2, and HI at 458 ∘C contains 0.112 molH2, 0.112 molI2, and 0.775 molHI in a 5.00-L vessel. 1)What are the equilibrium partial pressure of HI when equilibrium is reestablished following the addition of 0.200 mol of HI? Express your answer to four significant figures and include the appropriate units 2)What are the equilibrium partial pressure of I2 when equilibrium is reestablished following the addition of 0.200 mol of HI? Express your answer to three...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT