Question

In: Statistics and Probability

1. If Z is a standard normal random variable, find c such that P(−c ≤ Z...

1. If Z is a standard normal random variable, find c such that P(−cZc) = 0.82. [Answer to 2 decimal places]

2. Weakly earnings on a certain import venture are approximately normally distributed with a known mean of $353 and unknown standard deviation. If the proportion of earnings over $386 is 25%, find the standard deviation. Answer only up to two digits after decimal.

3. X is a normal random variable with mean μ and standard deviation σ. Then P( μ− 1.7 σ ≤ X ≤ μ+ 2.8 σ) =? Answer to 4 decimal places.

Solutions

Expert Solution

Solution,

1) Using standard normal table,

P( -c Z c) = 0.82

= P(Z c) - P(Z -c ) = 0.82

= 2P(Z c) - 1 = 0.82

= 2P(Z c) = 1 + 0.82

= P(Z c) = 1.82 / 2

= P(Z c) = 0.91

= P(Z 1.34) = 0.91

= c ± 1.34

2) Given that,

mean = = 353

x = 386

Using standard normal table,

P(Z > z) = 25%

= 1 - P(Z < z) = 0.25

= P(Z < z) = 1 - 0.25

= P(Z < z ) = 0.75

= P(Z < 0.6745 ) = 0.75

z = 0.6745

Using z-score formula,

x = z * +

386 = 0.6745 * + 353

= 386 - 353 / 0.6745

= 48.93

3) P( -1.7 < Z < 2.8)

= P( Z < 2.8) - P( Z < -1.7)

= 0.9974 - 0.0446

= 0.9528


Related Solutions

Let z be a random variable with a standard normal distribution. Find “a” such that P(|Z|...
Let z be a random variable with a standard normal distribution. Find “a” such that P(|Z| <A)= 0.95 This is what I have: P(-A<Z<A) = 0.95 -A = -1.96 How do I use the symmetric property of normal distribution to make A = 1.96? My answer at the moment is P(|z|< (-1.96) = 0.95
Let z be a random variable with a standard normal distribution. Find P(0 ≤ z ≤...
Let z be a random variable with a standard normal distribution. Find P(0 ≤ z ≤ 0.46), and shade the corresponding area under the standard normal curve. (Use 4 decimal places.)
Find the following probabilities for the standard normal random variable z z : a) P(−2.07≤z≤1.93)= P...
Find the following probabilities for the standard normal random variable z z : a) P(−2.07≤z≤1.93)= P ( − 2.07 ≤ z ≤ 1.93 ) = (b) P(−0.46≤z≤1.73)= P ( − 0.46 ≤ z ≤ 1.73 ) = (c) P(z≤1.44)= P ( z ≤ 1.44 ) = (d) P(z>−1.57)= P ( z > − 1.57 ) =
Find the following probabilities for the standard normal random variable z: (a) P(−0.76<z<0.75)= (b) P(−0.98<z<1.36)= (c)...
Find the following probabilities for the standard normal random variable z: (a) P(−0.76<z<0.75)= (b) P(−0.98<z<1.36)= (c) P(z<1.94)= (d) P(z>−1.2)= 2. Suppose the scores of students on an exam are Normally distributed with a mean of 480 and a standard deviation of 59. Then approximately 99.7% of the exam scores lie between the numbers ---- and -----. ?? Hint: You do not need to use table E for this problem.
Find the following probability for a standard normal random variable, P(Z ≥ -2.16 )
Find the following probability for a standard normal random variable, P(Z ≥ -2.16 )
Find the probabilities for the standard normal random variable z: (1 point) P(-2.58<z<2.58) x is a...
Find the probabilities for the standard normal random variable z: (1 point) P(-2.58<z<2.58) x is a normal random variable with mean (μ) of 10 and standard deviation (σ) of 2. Find the following probabilities: (4 points) P(x>13.5)               (1 point) P(x<13.5)               (1 point) P(9.4<x<10.6)     (2 points)
Z is a standard normal random variable, then k is ... a. P(Z < k) =...
Z is a standard normal random variable, then k is ... a. P(Z < k) = 0.92 b. P(Z > k) = 0.72 c. P(Z ≤ k) = 0.26 d. (A-Grade) P(−1 < Z < k) = 0.60 e. (A-Grade) P(k < Z < 1.7) = 0.57 f. (A-Grade) P(Z = k) = 0.00
QUESTION 1 If Z is a standard normal random variable, then P(Z > 0) =   0...
QUESTION 1 If Z is a standard normal random variable, then P(Z > 0) =   0 1 0.4579 0.5 1 points    QUESTION 2 Company A claims that 20% of people in Sydney prefer its product (Brand A). Company B disputes the 20% but has no idea whether a higher or lower proportion is appropriate.  Company B randomly samples 400 people and 88 of them prefer Company A's product (Brand A). Assuming a 5% significance level, which one of the following...
For a standard normal distribution, find 1. P(z > c)=0.3796 Find c. 2. P(z < c)=0.0257...
For a standard normal distribution, find 1. P(z > c)=0.3796 Find c. 2. P(z < c)=0.0257 Find c. 3. P(-2.68< z > -0.38) 4. P(z > -1.55) 5. P(z < -0.32)
Find the value of the standard normal random variable z, called z0 such that: (b)  P(−z0≤z≤z0)=0.3264 (c)  P(−z0≤z≤z0)=0.8332...
Find the value of the standard normal random variable z, called z0 such that: (b)  P(−z0≤z≤z0)=0.3264 (c)  P(−z0≤z≤z0)=0.8332 (d)  P(z≥z0)=0.3586 (e)  P(−z0≤z≤0)=0.4419 (f)  P(−1.15≤z≤z0)=0.5152
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT