In: Statistics and Probability
x:4,5,3,6,10
y:4,6,5,7,7
A.)Determine .95 confidence interval for the mean perdicted when x =7
b.) Determine the .95 perdection interval for an indvidual predicted when x =7
X | Y | XY | X² | Y² |
4 | 4 | 16 | 16 | 16 |
5 | 6 | 30 | 25 | 36 |
3 | 5 | 15 | 9 | 25 |
6 | 7 | 42 | 36 | 49 |
10 | 7 | 70 | 100 | 49 |
Ʃx = | Ʃy = | Ʃxy = | Ʃx² = | Ʃy² = |
28 | 29 | 173 | 186 | 175 |
Sample size, n = | 5 |
x̅ = Ʃx/n = 28/5 = | 5.6 |
y̅ = Ʃy/n = 29/5 = | 5.8 |
SSxx = Ʃx² - (Ʃx)²/n = 186 - (28)²/5 = | 29.2 |
SSyy = Ʃy² - (Ʃy)²/n = 175 - (29)²/5 = | 6.8 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 173 - (28)(29)/5 = | 10.6 |
Slope, b = SSxy/SSxx = 0.3630137
y-intercept, a = y̅ -b* x̅ = 3.76712329
Regression equation :
ŷ = 3.7671 + (0.363) x
Predicted value of y at x = 7
ŷ = 3.7671 + (0.363) * 7 = 6.3082
Sum of Square error, SSE = SSyy -SSxy²/SSxx = 6.8 - (10.6)²/29.2 = 2.95205
Standard error, se = √(SSE/(n-2)) = √(2.95205/(5-2)) = 0.992
Significance level, α = 0.05
Critical value, t_c = T.INV.2T(0.05, 3) = 3.1824
A) 95% confidence interval for the mean predicted when x =7
-----------------------
B) 95% prediction interval for an individual predicted when x =7