In: Math
Construct a 95% confidence interval to estimate the population mean when x bar =124 and s =29 for the sample sizes below.
a)
n=40
b)
n=50
c)
n=90
round to 2 decimale places as needed
Solution :
Given that,
Point estimate = sample mean = = 124
sample standard deviation = s = 29
(a)
sample size = n = 40
Degrees of freedom = df = n - 1 = 40 - 1 = 39
At 95% confidence level the t is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
t /2,df = t0.025,39 = 2.023
Margin of error = E = t/2,df * (s /n)
= 2.023 * (29 / 40)
= 9.28
The 95% confidence interval estimate of the population mean is,
- E < < + E
124 - 9.28 < < 124 + 9.28
114.72 < < 133.28
(114.72 , 133.28)
(b)
ample size = n = 50
Degrees of freedom = df = n - 1 = 50 - 1 = 49
At 95% confidence level the t is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
t /2,df = t0.025,49 = 2.010
Margin of error = E = t/2,df * (s /n)
= 2.010 * (29 / 50)
= 8.24
The 95% confidence interval estimate of the population mean is,
- E < < + E
124 - 8.24 < < 124 + 8.24
115.76< < 132.24
(115.76 , 132.24)
(c)
ample size = n = 90
Degrees of freedom = df = n - 1 = 90 - 1 = 89
At 95% confidence level the t is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
t /2,df = t0.025,89 = 1.987
Margin of error = E = t/2,df * (s /n)
= 1.987 * (29 / 40)
= 6.07
The 95% confidence interval estimate of the population mean is,
- E < < + E
124 - 6.07 < < 124 + 6.07
117.93 < < 130.07
(117.93 , 130.07)