In: Statistics and Probability
Construct a 95% confidence interval to estimate the population mean with x overbar equals 104 and sigma equals 28 for the following sample sizes.
a) n equals 30 b) n equals 48 c) n equals 66
Solution :
Given that,
Point estimate = sample mean = = 104
Population standard deviation = = 28
a)
Sample size = n = 30
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z/2* ( /n)
= 1.96 * (28 / 30)
= 10.02
At 95% confidence interval estimate of the population mean is,
- E < < + E
104 - 10.02 < < 104 + 10.02
93.98 < < 114.02
(93.98 , 114.02)
b)
Sample size = n = 48
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z/2* ( /n)
= 1.96 * (28 /48)
= 7.92
At 95% confidence interval estimate of the population mean is,
- E < < + E
104 - 7.92 < < 104 + 7.92
96.08 < < 111.92
(96.08 , 111.92)
c)
Sample size = n = 66
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z/2* ( /n)
= 1.96 * (28 / 66)
= 6.76
At 95% confidence interval estimate of the population mean is,
- E < < + E
104 - 6.76 < < 104 + 6.76
97.24 < < 110.76
(97.24 , 110.76 )