In: Statistics and Probability
Determine a 95% confidence interval for the population slope. What are the values in this confidence interval tell you? Be specific
X | Y |
1870 | 3.38 |
1330 | 1.16 |
1760 | 1.58 |
1520 | 2.65 |
1300 | 1.98 |
1520 | 2.39 |
1640 | 2.49 |
1490 | 2.81 |
1300 | 2.95 |
1360 | 1.69 |
1940 | 3.49 |
1730 | 2.8 |
1790 | 2.95 |
1780 | 3.8 |
1730 | 2.64 |
1380 | 2.36 |
1580 | 3.1 |
1900 | 1.96 |
1640 | 3.08 |
1540 | 2.24 |
1350 | 2.59 |
1380 | 2.43 |
1780 | 1.95 |
1700 | 2.07 |
1610 | 2.34 |
1720 | 3.59 |
2070 | 3.59 |
1210 | 2.12 |
1720 | 2.48 |
1510 | 2.37 |
1790 | 2.1 |
2100 | 2.55 |
1690 | 3.01 |
1490 | 2.67 |
1760 | 1.87 |
1540 | 2.21 |
1810 | 2.37 |
1430 | 3.37 |
1540 | 1.84 |
1270 | 2.96 |
X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
1870 | 3.38 | 65408.06 | 0.690 | 212.400 |
1330 | 1.16 | 80798.06 | 1.931 | 394.965 |
1760 | 1.58 | 21243.06 | 0.940 | -141.305 |
1520 | 2.65 | 8883.06 | 0.010 | -9.472 |
1300 | 1.98 | 98753.06 | 0.324 | 178.965 |
1520 | 2.39 | 8883.06 | 0.025 | 15.033 |
1640 | 2.49 | 663.06 | 0.004 | -1.532 |
1490 | 2.81 | 15438.06 | 0.068 | -32.367 |
1300 | 2.95 | 98753.063 | 0.160 | -125.857 |
1360 | 1.69 | 64643.063 | 0.739 | 218.528 |
1940 | 3.49 | 106113.063 | 0.885 | 306.368 |
1730 | 2.8 | 13398.063 | 0.063 | 28.995 |
1790 | 2.95 | 30888.063 | 0.160 | 70.388 |
1780 | 3.8 | 27473.063 | 1.564 | 207.270 |
1730 | 2.64 | 13398.063 | 0.008 | 10.475 |
1380 | 2.36 | 54873.063 | 0.036 | 44.390 |
1580 | 3.1 | 1173.063 | 0.303 | -18.855 |
1900 | 1.96 | 81653.063 | 0.348 | -168.450 |
1640 | 3.08 | 663.063 | 0.281 | 13.660 |
1540 | 2.24 | 5513.063 | 0.096 | 22.980 |
1350 | 2.59 | 69828.063 | 0.002 | -10.702 |
1380 | 2.43 | 54873.063 | 0.014 | 27.993 |
1780 | 1.95 | 27473.063 | 0.359 | -99.367 |
1700 | 2.07 | 7353.063 | 0.230 | -41.117 |
1610 | 2.34 | 18.063 | 0.044 | 0.890 |
1720 | 3.59 | 11183.063 | 1.083 | 110.033 |
2070 | 3.59 | 207708.063 | 1.083 | 474.208 |
1210 | 2.12 | 163418.063 | 0.184 | 173.625 |
1720 | 2.48 | 11183.063 | 0.005 | -7.350 |
1510 | 2.37 | 10868.063 | 0.032 | 18.713 |
1790 | 2.1 | 30888.063 | 0.202 | -79.000 |
2100 | 2.55 | 235953.063 | 0.000 | 0.243 |
1690 | 3.01 | 5738.063 | 0.212 | 34.883 |
1490 | 2.67 | 15438.063 | 0.015 | -14.972 |
1760 | 1.87 | 21243.063 | 0.462 | -99.037 |
1540 | 2.21 | 5513.063 | 0.115 | 25.208 |
1810 | 2.37 | 38318.063 | 0.032 | -35.137 |
1430 | 3.37 | 33948.063 | 0.673 | -151.177 |
1540 | 1.84 | 5513.063 | 0.503 | 52.680 |
1270 | 2.96 | 118508.063 | 0.169 | -141.315 |
.
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 64570 | 101.98 | 1873577.500 | 14.1 | 1465.885 |
mean | 1614.25 | 2.55 | SSxx | SSyy | SSxy |
sample size , n = 40
here, x̅ = Σx / n= 1614.25 ,
ȳ = Σy/n = 2.55
SSxx = Σ(x-x̅)² =
1873577.5000
SSxy= Σ(x-x̅)(y-ȳ) = 1465.9
estimated slope , ß1 = SSxy/SSxx = 1465.9
/ 1873577.500 =
0.0008
SSE= (SSxx * SSyy - SS²xy)/SSxx =
12.906
std error ,Se = √(SSE/(n-2)) =
0.58278
confidence interval for slope
α= 0.05
t critical value= t α/2 =
2.024 [excel function: =t.inv.2t(α/2,df) ]
estimated std error of slope = Se/√Sxx =
0.58278 /√ 1873577.50
= 0.000
margin of error ,E= t*std error = 2.024
* 0.000 = 0.001
estimated slope , ß^ = 0.0008
lower confidence limit = estimated slope - margin of error
= 0.0008 - 0.001
= -0.0001
upper confidence limit=estimated slope + margin of error
= 0.0008 + 0.001
= 0.0016
value of confidence interval tells that 0 is contained in it, so, slope is not significant at α=0.05