Question

In: Statistics and Probability

Determine a 95% confidence interval for the population slope. What are the values in this confidence...

Determine a 95% confidence interval for the population slope. What are the values in this confidence interval tell you? Be specific

X Y
1870 3.38
1330 1.16
1760 1.58
1520 2.65
1300 1.98
1520 2.39
1640 2.49
1490 2.81
1300 2.95
1360 1.69
1940 3.49
1730 2.8
1790 2.95
1780 3.8
1730 2.64
1380 2.36
1580 3.1
1900 1.96
1640 3.08
1540 2.24
1350 2.59
1380 2.43
1780 1.95
1700 2.07
1610 2.34
1720 3.59
2070 3.59
1210 2.12
1720 2.48
1510 2.37
1790 2.1
2100 2.55
1690 3.01
1490 2.67
1760 1.87
1540 2.21
1810 2.37
1430 3.37
1540 1.84
1270 2.96

Solutions

Expert Solution

X Y (x-x̅)² (y-ȳ)² (x-x̅)(y-ȳ)
1870 3.38 65408.06 0.690 212.400
1330 1.16 80798.06 1.931 394.965
1760 1.58 21243.06 0.940 -141.305
1520 2.65 8883.06 0.010 -9.472
1300 1.98 98753.06 0.324 178.965
1520 2.39 8883.06 0.025 15.033
1640 2.49 663.06 0.004 -1.532
1490 2.81 15438.06 0.068 -32.367
1300 2.95 98753.063 0.160 -125.857
1360 1.69 64643.063 0.739 218.528
1940 3.49 106113.063 0.885 306.368
1730 2.8 13398.063 0.063 28.995
1790 2.95 30888.063 0.160 70.388
1780 3.8 27473.063 1.564 207.270
1730 2.64 13398.063 0.008 10.475
1380 2.36 54873.063 0.036 44.390
1580 3.1 1173.063 0.303 -18.855
1900 1.96 81653.063 0.348 -168.450
1640 3.08 663.063 0.281 13.660
1540 2.24 5513.063 0.096 22.980
1350 2.59 69828.063 0.002 -10.702
1380 2.43 54873.063 0.014 27.993
1780 1.95 27473.063 0.359 -99.367
1700 2.07 7353.063 0.230 -41.117
1610 2.34 18.063 0.044 0.890
1720 3.59 11183.063 1.083 110.033
2070 3.59 207708.063 1.083 474.208
1210 2.12 163418.063 0.184 173.625
1720 2.48 11183.063 0.005 -7.350
1510 2.37 10868.063 0.032 18.713
1790 2.1 30888.063 0.202 -79.000
2100 2.55 235953.063 0.000 0.243
1690 3.01 5738.063 0.212 34.883
1490 2.67 15438.063 0.015 -14.972
1760 1.87 21243.063 0.462 -99.037
1540 2.21 5513.063 0.115 25.208
1810 2.37 38318.063 0.032 -35.137
1430 3.37 33948.063 0.673 -151.177
1540 1.84 5513.063 0.503 52.680
1270 2.96 118508.063 0.169 -141.315

.

ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum 64570 101.98 1873577.500 14.1 1465.885
mean 1614.25 2.55 SSxx SSyy SSxy

sample size ,   n =   40          
here, x̅ = Σx / n=   1614.25   ,     ȳ = Σy/n =   2.55  
                  
SSxx =    Σ(x-x̅)² =    1873577.5000          
SSxy=   Σ(x-x̅)(y-ȳ) =   1465.9          
                  
estimated slope , ß1 = SSxy/SSxx =   1465.9   /   1873577.500   =   0.0008

SSE=   (SSxx * SSyy - SS²xy)/SSxx =    12.906
      
std error ,Se =    √(SSE/(n-2)) =    0.58278

confidence interval for slope                  
α=   0.05              
t critical value=   t α/2 =    2.024   [excel function: =t.inv.2t(α/2,df) ]      
estimated std error of slope = Se/√Sxx =    0.58278   /√   1873577.50   =   0.000
                  
margin of error ,E= t*std error =    2.024   *   0.000   =   0.001
estimated slope , ß^ =    0.0008              
                  
                  
lower confidence limit = estimated slope - margin of error =   0.0008   -   0.001   =   -0.0001
upper confidence limit=estimated slope + margin of error =   0.0008   +   0.001   =   0.0016

value of confidence interval tells that 0 is contained in it, so, slope is not significant at α=0.05


Related Solutions

Determine the margin of error for a 95​% confidence interval to estimate the population proportion with...
Determine the margin of error for a 95​% confidence interval to estimate the population proportion with a sample proportion equal to 0.70 for the following sample sizes. a. nequals100             b. nequals200             c. nequals250 LOADING... Click the icon to view a portion of the Cumulative Probabilities for the Standard Normal Distribution table. a. The margin of error for a 95​% confidence interval to estimate the population proportion with a sample proportion equal to 0.70 and sample size nequals100 is nothing. ​(Round...
Determine the critical values for the confidence interval for the population variance from the given values....
Determine the critical values for the confidence interval for the population variance from the given values. Round your answers to three decimal places. n=26 and c=0.9.
At a confidence level of 95% a confidence interval for a population proportion is determined to...
At a confidence level of 95% a confidence interval for a population proportion is determined to be 0.65 to 0.75. If the sample size had been larger and the estimate of the population proportion the same, this 95% confidence interval estimate as compared to the first interval estimate would be A. the same B. narrower C. wider
At a confidence level of 95% a confidence interval for a population proportion is determined to...
At a confidence level of 95% a confidence interval for a population proportion is determined to be 0.65 to 0.75. If the sample size had been larger and the estimate of the population proportion the same, this 95% confidence interval estimate as compared to the first interval estimate would be
95% Confidence Interval: 86.19 ± 0.364 (85.8 to 86.6) "With 95% confidence the population mean is...
95% Confidence Interval: 86.19 ± 0.364 (85.8 to 86.6) "With 95% confidence the population mean is between 85.8 and 86.6, based on 33945 samples." Short Styles: 86.19 (95% CI 85.8 to 86.6) 86.19, 95% CI [85.8, 86.6] Margin of Error: 0.364 What is the impact of your margin of error on your findings? Explain. Is there enough evidence to reject the null hypotheses, explain in plain English?
Use Table 10 of Appendix B to determine a 95% confidence interval for the true population...
Use Table 10 of Appendix B to determine a 95% confidence interval for the true population linear correlation coefficient based on the following sample statistics. (Give your answers correct to two decimal places.) (a) n = 8, r = 0.20 _____to____ (b) n = 100, r = −0.40 _____to _____ (c) n = 25, r = 0.65 _____to ____ (d) n = 15, r = −0.25 ____to ____
Determine the sample size n needed to construct a 95?% confidence interval to estimate the population...
Determine the sample size n needed to construct a 95?% confidence interval to estimate the population proportion for the following sample proportions when the margin of error equals 55?%. a. p? = 0.50 b. p = 0.60 c. p = 0.70
Use Table 10 of Appendix B to determine a 95% confidence interval for the true population...
Use Table 10 of Appendix B to determine a 95% confidence interval for the true population linear correlation coefficient based on the following sample statistics. (Give your answers correct to two decimal places.) (a) n = 8, r = 0.20 (b) n = 100, r = −0.40 (c) n = 25, r = 0.65 (d) n = 15, r = −0.25
Determine the sample size n needed to construct a 95​% confidence interval to estimate the population...
Determine the sample size n needed to construct a 95​% confidence interval to estimate the population mean for the following margins of error when sigma equals 67. ​a) 25 ​b) 40 ​c) 50
Determine the sample size n needed to construct a 95​% confidence interval to estimate the population...
Determine the sample size n needed to construct a 95​% confidence interval to estimate the population proportion for the following sample proportions when the margin of error equals 4​%. a. p over bar equals 0.10 b. p over bar equals 0.20 c. p over bar equals 0.30
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT