Question

In: Advanced Math

V and W are finite dimensional inner product spaces,T: V→W is a linear map 1A: Give...

V and W are finite dimensional inner product spaces,T: V→W is a linear map

1A: Give an example of a map T from R2 to itself (with the usual inner product) such that〈Tv,v〉= 0 for every map.

1B: Suppose that V is a complex space. Show that〈Tu,w〉=(1/4)(〈T(u+w),u+w〉−〈T(u−w),u−w〉)+(1/4)i(〈T(u+iw),u+iw〉−〈T(u−iw),u−iw〉

1C: Suppose T is a linear operator on a complex space such that〈Tv,v〉= 0 for all v. Show that T= 0 (i.e. that Tv=0 for all v).

Solutions

Expert Solution


Related Solutions

V and W are finite dimensional inner product spaces,T:V→W is a linear map, and∗represents the adjoint....
V and W are finite dimensional inner product spaces,T:V→W is a linear map, and∗represents the adjoint. 1A: Let n be a positive integer, and suppose that T is defined on C^n (with the usual inner product) by T(z1,z2,...,zn) = (0,z1,z2,...,zn−1). Give a formula for T*. 1B: Show that λ is an eigenvalue of T if and only if λ is an eigenvalue of T*.
suppose that T : V → V is a linear map on a finite-dimensional vector space...
suppose that T : V → V is a linear map on a finite-dimensional vector space V such that dim range T = dim range T2. Show that V = range T ⊕null T. (Hint: Show that null T = null T2, null T ∩ range T = {0}, and apply the fundamental theorem of linear maps.)
Let ? and W be finite dimensional vector spaces and let ?:?→? be a linear transformation....
Let ? and W be finite dimensional vector spaces and let ?:?→? be a linear transformation. We say a linear transformation ?:?→? is a left inverse of ? if ST=I_v, where ?_v denotes the identity transformation on ?. We say a linear transformation ?:?→? is a right inverse of ? if ??=?_w, where ?_w denotes the identity transformation on ?. Finally, we say a linear transformation ?:?→? is an inverse of ? if it is both a left and right...
Problem 3. An isometry between inner-product spaces V and W is a linear operator L in...
Problem 3. An isometry between inner-product spaces V and W is a linear operator L in B (V ,W) that preserves norms and inner-products. If x, y in V and if L is an isometry, then we have <L(x),L(y)>_W = <x, y>_V . Suppose that V and W are both real, n-dimensional inner-product spaces. Thus the scalar field for both is R and both of them have a basis consisting of n elements. Show that V and W are isometric...
Show that if V is finite-dimensional and W is infinite-dimensional, then V and W are NOT...
Show that if V is finite-dimensional and W is infinite-dimensional, then V and W are NOT isomorphic.
Let V and W be finite dimensional vector spaces over a field F with dimF(V )...
Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W ) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T ]AB is a diagonal matrix where every entry along the diagonal is either a 0 or a 1.
Question 1. Let V and W be finite dimensional vector spaces over a field F with...
Question 1. Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T] A B is a diagonal matrix where every entry along the diagonal is either a 0 or a 1. Hint 1. Suppose A = {~v1, . . . , ~vn}...
1. For a map f : V ?? W between vector spaces V and W to...
1. For a map f : V ?? W between vector spaces V and W to be a linear map it must preserve the structure of V . What must one verify to verify whether or not a map is linear? 2. For a map f : V ?? W between vector spaces to be an isomorphism it must be a linear map and also have two further properties. What are those two properties? As well as giving the names...
Questionnnnnnn a. Let V and W be vector spaces and T : V → W a...
Questionnnnnnn a. Let V and W be vector spaces and T : V → W a linear transformation. If {T(v1), . . . T(vn)} is linearly independent in W, show that {v1, . . . vn} is linearly independent in V . b. Define similar matrices c Let A1, A2 and A3 be n × n matrices. Show that if A1 is similar to A2 and A2 is similar to A3, then A1 is similar to A3. d. Show that...
Let V and W be Banach spaces and suppose T : V → W is a...
Let V and W be Banach spaces and suppose T : V → W is a linear map. Suppose that for every f ∈ W∗ the corresponding linear map f ◦ T on V is in V ∗ . Prove that T is bounded.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT