Question

In: Mechanical Engineering

An ideal Rankine cycle operates without superheat (wet cycle) as shown in the following T-s diagram....

An ideal Rankine cycle operates without superheat (wet cycle) as shown in the following T-s diagram. If saturated steam is expanded from 450 psia to steam with 5 % moisture, use the Mollier diagram and steam tables, as necessary, to determine the pump inlet temperature, in oF. State your answer to one decimal place.

Solutions

Expert Solution

Given that saturated steam (state 4) is expanded from 450 psia to steam with 5 % moisture (state 5).

• First mark a point (marked as yellow point in the figure) corresponding to constant pressure 450 psia in the saturation line.

• Draw a horizontal line from yellow point to the enthalpy axis. It gives the turbine inlet enthalpy.

Turbine inlet enthalpy, h4 =1205 Btu/lbm

• Draw a vertical line from that point (yellow) to the entropy axis.

• Now mark a point (marked as red in the figure) corresponding to 5% moisture on that vertical line.

• Draw a horizontal line from red point to the enthalpy axis . It gives the required turbine outlet enthalpy.

Turbine outlet enthalpy, h5 = 1165 Btu/lbm

Pressure at turbine outlet, P5 = 250 psia

From steam tables corresponding to pressure 250 psia,

Temperature, T5= 406.04oF

Pump inlet temperature, T1 = T5 = 406.04oF


Related Solutions

Steam is the working fluid in an ideal Rankine cycle with superheat and reheat. Steam enters...
Steam is the working fluid in an ideal Rankine cycle with superheat and reheat. Steam enters the high-pressure turbine at 8.0MPa, 480̊C, and expands to 0.6MPa. It is then reheatedto 450̊C before entering the low-pressure turbine where it expands to the condenser pressure of 10kPa. The net power output is 110MW. A closed feedwater heater (CFWH) which uses steam extracted fromthe low-pressure turbine at 0.5MP. The extracted steam leaves the CFWH as a saturated liquid and is then pumped up...
Q. No.1A regenerative Rankine cycle operates with superheat, 2 stages of expansion and one open feed...
Q. No.1A regenerative Rankine cycle operates with superheat, 2 stages of expansion and one open feed heater. The cycle parameters are:  Boiler exit pressure 100 bar  Super heater exit temperature 600°C  Condenser pressure 0.1 bar  Turbine isentropic efficiency 100% Assume that the feed pump work can be neglected. i. Determine the optimal inter-stage pressure by selecting the nearest value from the Saturated Water and Steam tables. i.e. do not interpolated between tabulated values. [2 marks] ii....
An ideal Rankine cycle with reheat uses water as the working fluid. As shown in the...
An ideal Rankine cycle with reheat uses water as the working fluid. As shown in the figure below, the conditions at the inlet to the first turbine stage are 1600 lbf/in.2, 1200°F and the steam is reheated to a temperature of T3 = 800°F between the turbine stages at a pressure of p3 = p2 = 400 lbf/in.2 For a condenser pressure of p5 = p4 = 5 lbf/in.2, determine: (a) the quality of the steam at the second-stage turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 600 psia and a turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 600 psia and a turbine inlet temperature of 526 oF. The steam is isentropically expanded through the turbine to 15 psia as illustrated on the T-s diagram shown below. Using the Mollier diagram, determine the enthalpy at the turbine inlet, in BTU/lbm, under these operating conditions. State your answer in whole numbers.
An ideal Rankine cycle operates with a turbine inlet pressure of 900 psia and a turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 900 psia and a turbine inlet temperature of 572 oF. The steam is isentropically expanded through the turbine to 5 psia as illustrated on the T-s diagram shown below. Using the Mollier diagram, determine the percent moisture at the turbine outlet under these operating conditions. State your answer in whole numbers.
An ideal Rankine cycle operates between the pressure limits of 15 MPa in the boiler and...
An ideal Rankine cycle operates between the pressure limits of 15 MPa in the boiler and 50 kPa in the condenser. The boiler generates steam at a mass flow rate of 50 kg/s and it enters the turbine at a temperature of 1100 °C. a) Calculate the net output of the cycle b) Calculate the thermal efficiency of the cycle.
A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits...
A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 4 MPa in the boiler and 5 kPa in the condenser and a turbine inlet temperature of 700°C. The boiler is sized to provide a steam flow of 50 kg/s. Determine the power produced by the turbine and consumed by the pump. Use steam tables. Find the values of power produced by the turbine and consumed by the pump in kW
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine at 4 MPa and 500 C and leaves it at 50 kPa and 150 C. the water leaves the condenser as a saturated liquid and is subsequently displaced to the boiler by means of a pump at a temperature of 85 C, which is the isentrophic efficiency of the turbine?
A steam power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at...
A steam power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at 6 MPa and 450oC and is condensed in the condenser at 20 kPa. Steam is extracted from the turbine at 0.4 MPa to heat the feedwater in an open feedwater heater. Water leaves the feedwater heater as a saturated liquid. Show the cycle on a T-s diagram and determine the fraction of steam extracted from the turbine for the open feedwater heater.
10–15E A simple ideal Rankine cycle with water as the working fluid operates between the pressure...
10–15E A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 2500 psia in the boiler and 5 psia in the condenser. What is the minimum temperature required at the turbine inlet such that the quality of the steam leaving the turbine is not below 80 percent. When operated at this temperature, what is the thermal efficiency of this cycle?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT