Question

In: Mechanical Engineering

An ideal Rankine cycle with reheat uses water as the working fluid. As shown in the...

An ideal Rankine cycle with reheat uses water as the working fluid. As shown in the figure below, the conditions at the inlet to the first turbine stage are 1600 lbf/in.2, 1200°F and the steam is reheated to a temperature of T3 = 800°F between the turbine stages at a pressure of p3 = p2 = 400 lbf/in.2

For a condenser pressure of p5 = p4 = 5 lbf/in.2, determine:

(a) the quality of the steam at the second-stage turbine exit.

(b) the cycle percent thermal efficiency.

Solutions

Expert Solution


Related Solutions

An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate...
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate of 0.15 kg/s. At the inlet of the turbine (state 1) the water is a superheated vapor at 475ºC and 11 MPa. The pressure at the exit of the first stage of the turbine is 0.9 MPa. The reheat temperature (state 3) is also  475ºC.   The condenser pressure is 8 kPa, and the water exits as a saturated liquid Find: (a) The heat addition to...
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate...
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate of 0.15 kg/s. At the inlet of the turbine (state 1) the water is a superheated vapor at 475ºC and 11 MPa. The pressure at the exit of the first stage of the turbine is 0.9 MPa. The reheat temperature (state 3) is also  475ºC.   The condenser pressure is 8 kPa, and the water exits as a saturated liquid Find: (a) The heat addition to...
Problem 2. Problem 1. An ideal Rankine Cycle with reheat uses water as the working fluid...
Problem 2. Problem 1. An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate of 0.15 kg/s. At the inlet of the turbine (state 1) the water is a superheated vapor at 475ºC and 11 MPa. The pressure at the exit of the first stage of the turbine is 0.9 MPa. The reheat temperature (state 3) is also  475ºC.   The condenser pressure is 8 kPa, and the water exits as a saturated liquid Find: (a)...
A Rankine power cycle with reheat uses water as the working fluid. The inlet conditions of...
A Rankine power cycle with reheat uses water as the working fluid. The inlet conditions of the first stage turbine are 14MPa and 600oC. All the turbines are known to have isentropic efficiency of 85%, however the pump is assumed as an isentropic pump. If the maximum temperature is kept at 600oC and the condenser pressure is 6 kPa, by constructing a suitable plot, show that having more than 2 reheat stages is not practical. (Hint: Take at least three...
A Rankine power cycle with reheat uses water as the working fluid. The inlet conditions of...
A Rankine power cycle with reheat uses water as the working fluid. The inlet conditions of the first stage turbine are 14MPa and 600C. All the turbines are known to have isentropic efficiency of 85%, however the pump is assumed as an isentropic pump. If the maximum temperature is kept at 600C and the condenser pressure is 6 kPa, by constructing a suitable plot, show that having more than 2 reheat stages is not practical. (Hint: Take at least three...
Steam is the working fluid in an ideal Rankine cycle with superheat and reheat. Steam enters...
Steam is the working fluid in an ideal Rankine cycle with superheat and reheat. Steam enters the high-pressure turbine at 8.0MPa, 480̊C, and expands to 0.6MPa. It is then reheatedto 450̊C before entering the low-pressure turbine where it expands to the condenser pressure of 10kPa. The net power output is 110MW. A closed feedwater heater (CFWH) which uses steam extracted fromthe low-pressure turbine at 0.5MP. The extracted steam leaves the CFWH as a saturated liquid and is then pumped up...
A reheat Rankine cycle operates with water as the working fluid. Steam enters the first turbine...
A reheat Rankine cycle operates with water as the working fluid. Steam enters the first turbine at 8 MPa and 450◦C and exits at 0.8 MPa. It is then reheated at 400◦C before entering the second turbine, where it exits at 10 kPa. If the amount of work into the pump is 8.04 kJ/kg and the net work per cycle produced is 1410.5 kJ/kg, determine the thermal efficiency. Assume no pressure losses in the condenser or the boiler.
Use water as the working fluid ,apply Rankine power cycle with reheat . The first stage...
Use water as the working fluid ,apply Rankine power cycle with reheat . The first stage turbine inlet conditions are 15MPa and 600 C. All the turbines are known to have isentropic efficiency of 95%, however the pump is assumed as an isentropic pump. If the maximum temperature is kept at 500 C and the condenser pressure is 5 kPa, by constructing a suitable plot, show that having more than 2 reheat stages is not practical. (Hint: Take at least...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The net power...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The net power of power plant is 220-MW. At the turbine inlet, steam is at 9 MPa and 560°C. The condenser pressure is 20 kPa. Determine the following values.   The temperature at the pump inlet. °CThe specific enthalpy at the pump inlet. kJ/kgThe specific volume at the pump inlet. m3/kgThe pump work. kJ/kgThe temperature at pump exit. °CThe specific entropy at turbine inlet. kJ/kg·KThe quality of steam...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure is 6100 kPa and the condenser pressure is 30 kPa. At the turbine inlet, steam is at 480°C. The isentropic efficiency of the turbine is 92 percent. The pump losses are negligible and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the following values. The temperature at the pump inlet....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT