Question

In: Other

An ideal Rankine cycle operates between the pressure limits of 15 MPa in the boiler and...

An ideal Rankine cycle operates between the pressure limits of 15 MPa in the boiler and 50 kPa in the condenser. The boiler generates steam at a mass flow rate of 50 kg/s and it enters the turbine at a temperature of 1100 °C. a) Calculate the net output of the cycle b) Calculate the thermal efficiency of the cycle.

Solutions

Expert Solution


Related Solutions

A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 1 psia in the condenser. The turbine inlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. Calculate the mass flow rate through the boiler, the power produced by the turbine, the rate of heat supply in the boiler, and the thermal efficiency. Use steam tables
Rankine cycle operates on boiler pressure 15 MPa and condenser pressure of 30 kPa. Superheated steam...
Rankine cycle operates on boiler pressure 15 MPa and condenser pressure of 30 kPa. Superheated steam enters the high-pressure turbine at 450°C. The high-pressure turbine expands the steam and enters the re-heater at 2.5 MPa. The steam is reheated until temperature reaches 450°C before being expanded in low-pressure turbine to condenser pressure of 30 kPa. Assume the isentropic efficiency of the low-pressure and high-pressure turbines are 94% and 89% respectively, and pump is working isentropically. Neglect the change in kinetic...
A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits...
A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 4 MPa in the boiler and 5 kPa in the condenser and a turbine inlet temperature of 700°C. The boiler is sized to provide a steam flow of 50 kg/s. Determine the power produced by the turbine and consumed by the pump. Use steam tables. Find the values of power produced by the turbine and consumed by the pump in kW
A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure of...
A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure of 5.75MPa, steam enters the turbine at 500°C and expands to 147kPa. If the powerplant is producing 5MW of energy find the following: Enthalpies at each point of the cycle 1,2,3,B (hint: you will have to interpolate horizontally for point 1 and interpolate for the f,g,fg values for point 2) Net work in kj/kg Mass flow rate of throttle steam used by the powerplant Heat...
1. A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure...
1. A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure of 5.75 MPa, steam enters the turbine at 500°C and expands to 147 kPa. If the powerplant is producing 5MW of energy find the following: a. Enthalpies at each point of the cycle 1,2,3,B b. Net work in kj/kg c. Mass flow rate of throttle steam used by the powerplant d. heat added in the boiler e. heat rejected in the condenser f. cycle...
10–15E A simple ideal Rankine cycle with water as the working fluid operates between the pressure...
10–15E A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 2500 psia in the boiler and 5 psia in the condenser. What is the minimum temperature required at the turbine inlet such that the quality of the steam leaving the turbine is not below 80 percent. When operated at this temperature, what is the thermal efficiency of this cycle?
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure is 6100 kPa and the condenser pressure is 30 kPa. At the turbine inlet, steam is at 480°C. The isentropic efficiency of the turbine is 92 percent. The pump losses are negligible and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the following values. The temperature at the pump inlet....
A Rankine cycle with reheat produces 1 MW of net power. The boiler operates at 15...
A Rankine cycle with reheat produces 1 MW of net power. The boiler operates at 15 MPa and has an outlet temperature of 800 K. The condenser operates at atmospheric pressure (1 atm). The operating point of this cycle is such that the water exiting the low pressure turbine has no liquid present to prevent damageto the turbine (hint: what does this say about quality at this point?). Assume the pump and second turbine stage are both isentropic, but the...
An ideal Rankine cycle operates with a turbine inlet pressure of 600 psia and a turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 600 psia and a turbine inlet temperature of 526 oF. The steam is isentropically expanded through the turbine to 15 psia as illustrated on the T-s diagram shown below. Using the Mollier diagram, determine the enthalpy at the turbine inlet, in BTU/lbm, under these operating conditions. State your answer in whole numbers.
An ideal Rankine cycle operates with a turbine inlet pressure of 900 psia and a turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 900 psia and a turbine inlet temperature of 572 oF. The steam is isentropically expanded through the turbine to 5 psia as illustrated on the T-s diagram shown below. Using the Mollier diagram, determine the percent moisture at the turbine outlet under these operating conditions. State your answer in whole numbers.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT