In: Statistics and Probability
Determine the standard normal (z) curve areas below. (Round all answers to four decimal places.)
(a) The area under the z curve to the left of
1.74
(b) The area under the z curve to the left of -0.67
(c) The area under the z curve to the right of 1.3
(d) The area under the z curve to the right of -2.82
(e) The area under the z curve between -2.22 and
0.53
(f) The area under the z curve between -2 and 2
(g) The area under the z curve between -4 and 4
Solution:
Using standard normal table,
a ) P (z < 1.74 )
P (z < 1.74 ) = 0.9591
The area = 0.9591
b ) P (z < - 0.67 )
= 0.2514
P (z <- 0.67 ) = 0.2514
The area = 0.2514
c ) P (z > 1.3 )
= 1 - P (z < 1.3)
= 1 - 0.9032
= 0.0968
P (z > 1.3 ) = 0 0968
The area = 0.0968
d ) P (z > - 2.82 )
= 1 - P (z < - 2.82 )
= 1 - 0.0024
= 0.9976
P (z > 1.3 ) = 0 9976
The area = 0.9976
e ) P ( -2.22 < z < 0.53 )
= P ( z < 0.53 ) - P ( z < - 2. 22 )
= 0.7019 - 0.0132
= 0.6887
P ( -2.22 < z < 0.53 ) = 0.6887
The area = 0.6887
f ) P ( - 2.< z < 2)
= P ( z < 2 ) - P ( z < - 2 )
= 0.9772 - 0.0228
= 0.9544
P ( -2. < z < 2 ) = 0.9544
The area = 0.9544
g ) P ( - 4 < z < 4 )
= P ( z < 4 ) = P ( z < - 4 )
= 1 - 0
= 1.0000
P ( - 4 < z < 4 ) = 1.0000
The area = 1.0000