In: Statistics and Probability
Determine the value z* that satisfies the conditions below. (Round all answers to two decimal places.)
(a) Separates the largest 3.2% of all z values from the
others
z* =
(b) Separates the largest 0.8% of all z values from the
others
z* =
(c) Separates the smallest 5.6% of all z values from the
others
z* =
(d) Separates the smallest 12.1% of all z values from the
others
z* =
Solution :-
a)
The ' z ' Ditribution of the largest 3.2 % is ,
P ( Z > z ) = 3.2 %
1 - P ( Z < z ) = 0.032
P ( Z < z ) = 1 - 0.032
P ( Z < z ) = 0.968
By using standard normal ( z ) table,
P ( Z < 1.852 ) = 0.968
z = 1.85
------------------------------
b)
The ' z ' Ditribution of the largest 0.8 % is ,
P ( Z > z ) = 0.8 %
1 - P ( Z < z ) = 0.008
P ( Z < z ) = 1 - 0.008
P ( Z < z ) = 0.992
By using standard normal ( z ) table,
P ( Z < 2.409 ) = 0.992
z = 2.41
------------------------------
c)
The ' z ' Ditribution of the Smallest 5.6 % is ,
P ( Z < z ) = 5.6 %
P ( Z < z ) = 0.056
By using standard normal ( z ) table,
P ( Z < - 1.589 ) = 0.056
z = - 1.59
---------------------------------
d)
The ' z ' Ditribution of the Smallest 12.1 % is ,
P ( Z < z ) = 12.1 %
P ( Z < z ) = 0.121
By using standard normal ( z ) table,
P ( Z < - 1.17 ) = 0.121
z = - 1.17